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Abstract

Using an extensive data set of 15,600 CDS and CDO tranche
spreads on the North American Investment Grade CDX index I con-
duct an empirical analysis of a Duffie and Gârleanu (2001) intensity-
based model for correlated defaults. I examine the model with respect
to model assumptions, pricing in both the cross section and time se-
ries dimension, and hedging ability. The results show that the model
assumptions are reasonable and that average prices are matched well.
In addition, the model accurately tracks the prices over time of the
more risky tranches. Finally, the model sensitivity of the most risky
tranches to underlying CDS spreads match actual sensitivities better
than those implied by the commonly used Gaussian copula. The last
result suggests that the model is well-suited for hedging the equity
tranche.
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1 Introduction

The market for credit derivatives has experienced a massive growth in re-
cent years and investors can now take on exposure to specific segments of
the default loss distribution of an index of firms by trading in standardized
Collateral Debt Obligation (CDO) tranches. Each tranche has a different
sensitivity to the default correlation and credit risk of firms in the index,
and numerous models specifying default and correlation dynamics have been
proposed in the last years.

A good model of multi-name default should ideally have the following
properties. First, the model should be able to match actual tranche prices
consistently such that for a fixed set of model parameters, prices are matched
over a period of time. This is important for pricing non-standard tranches
in a market where prices are available for standard tranches. Second, CDO
tranche prices should exhibit correct sensitivities to changes in the underly-
ing firms’ default probabilities, such that this ’spread risk’ can be hedged.
Often, market participants take a view on correlation by investing in a CDO
tranche and hedge the ’spread risk’ by entering an offsetting position in un-
derlying CDS contracts. The accuracy of the offsetting position depends
on the model’s ability to replicate the CDO tranche price sensitivities with
respect to the underlying CDS contracts. Third, the model should have pa-
rameters that are economically interpretable, such that parameter values can
be discussed and critically evaluated. If a bespoke CDO tranche on a non-
standard pool of underlying firms needs to be priced and parameters cannot
be inferred from existing market prices, economic interpretability provides
guidance in choosing parameters. Fourth, credit spreads and their correlation
should be modelled dynamically such that options on multi-name products
can be priced. And fifth, since market makers quote prices at any given time,
pricing formulas should not be too time-consuming to evaluate.

The standard model for pricing and hedging CDO tranches is the Gaus-
sian copula. The model is a static one-period model (applied repeatedly to
cash flows at different dates) where the default environment for all firms is de-
termined by a single normal variable. Since there is no dynamic behavior for
default risk present in the model, it lacks realism and does not have the abil-
ity to value CDO derivatives such as options. Also, holding parameters fixed
it is not possible to consistently price CDO tranches over time or even price
tranches consistently on a given day. Matching different tranche prices on a
single day requires different correlation parameters, a phenomenon called the
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’correlation skew’. This is problematic since it is not clear which correlation
parameter to use when pricing non-standard tranches and simple interpola-
tion schemes can lead to a number of problems such as negative prices (see
Willemann (2005)). Alternatives to the Gaussian copula have been proposed
such as the t-copula (Mashal and Naldi (2002)), double-t copula (Hull and
White (2004)), and the Clayton copula to name just a few and while some of
the models match CDO tranche spreads better they are in essence still static
models.

In single-name default modeling the stochastic intensity-based framework
introduced in Lando (1994) and Duffie and Singleton (1999) has proven very
successful and is widely used1. Default of a firm in an intensity-based model
is determined by the first jump of a pure jump process with a stochastic de-
fault intensity. Duffie and Gârleanu (2001) extend the single-name intensity
framework to a multi-name setting by letting firms’ default intensities be the
sum of an idiosyncratic component and a common component that affects the
default of all firms. In this setting, pricing of options is possible, parameters
are interpretable, and hedge ratios can be calculated. While the model has
many attractive properties it has not been much used due to two reasons.
First, it has been argued that it is too time-consuming to price correlation
products in intensity models (Hull and White (2004)). However, Mortensen
(2006) prices CDO tranches semi-analytically and finds that the model is as
fast as for example the t-copula of Hull and White (2004). Second, some ar-
gue that intensity-based models cannot generate enough default correlation
to match market prices. This is true in a pure diffusion, but with jumps in
the intensity process market prices can indeed be matched.

This paper estimates a multi-name intensity model as proposed in Duffie
and Gârleanu (2001) and modified in Mortensen (2006) to allow for hetero-
geneous default intensity dynamics. While Mortensen (2006) calibrates the
model to CDS and CDO tranche spread on a single day, I use an exten-
sive panel set of 15,600 CDS and CDO spreads on the Dow Jones North
American Investment Grade Index and examine the properties of the model
along several dimensions: assumptions regarding the underlying firms’ de-
fault intensity dynamics are thoroughly examined by estimating the default
intensity dynamics of all the 125 underlying firms separately. Also, the abil-
ity to price CDO tranches is carefully examined in both the cross section and

1Examples of empirical applications are Duffie and Singleton (1997), Duffee (1999),
and Longstaff, Mithal, and Neis (2005).
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time series dimension. In other words, I examine whether the model is able
to simultaneously match both average CDO spreads and the dynamics of
CDO spreads over time. Eckner(2007a, 2007b) implements a similar model
but recalibrates the model parameters daily and is focused on risk premia on
the CDO market. Finally, I compare the hedging ability of the model with
that of a standard Gaussian copula by seeing how well the models match
the sensitivity of CDO tranche prices to changes in underlying CDS spreads.
To the best of my knowledge such a comprehensive evaluation of a CDO
pricing model has not been done in the literature yet. Longstaff and Rajan
(2006) and Bhansali, Gingrich, and Longstaff (2008) use time series of CDO
tranche prices to estimate a portfolio loss model, but since they model only
portfolio loss they cannot evaluate whether the loss dynamics of the model is
consistent with underlying firms’ default intensity dynamics and the model
does not produce deltas with respect to underlying CDS spreads. Houdain
and Guegan (2006) look at the ability of several copula models to hedge one
CDO tranche with another, but they do not discuss pricing.

The empirical results show that the model is able to match average CDO
tranche spreads across time. In addition, the model captures the spread vari-
ation through time in the most risky tranches well, while the model exhibits
too little price variation in senior tranches. Finally, the model matches the
sensitivity of the equity tranche, the most risky tranche, to underlying CDS
spreads better than a Gaussian copula. This implies that the model hedges
spread risk in the equity tranche more accurately than the Gaussian copula.

The remainder of the paper is organized as follows. Section 2 formulates
the multi-name default model and derives CDO tranche pricing formulas.
Section 3 explains the estimation methodology and section 4 describes the
data. Section 5 examines the modeling assumptions and pricing results while
section 6 report hedging results. Section 7 concludes.

2 Intensity-Based Default Risk Model

This section explains the model framework for single-name and multi-name
defaults. For pricing single-name credit default swaps the intensity-based
framework introduced in Lando (1994) and Duffie and Singleton (1999) is
used and default intensities are assumed to be affine. For multi-name col-
lateralized debt obligation valuation I follow Duffie and Gârleanu (2001) in
modeling the default intensity of each issuer as the sum of an idiosyncratic
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and a common affine process. Default correlation is created through the joint
dependence of default intensities on the common factor and loss distributions
are calculated semi-analytically as in Mortensen (2006).

2.1 Default Modeling

Default of a single issuer, τ , is supposed to arrive at intensity λt ≥ 0 which
implies that the conditional probability at time t of defaulting within a small
period of time ∆t is approximately

P (τ ≤ t + ∆t|τ > t) ≈ λt∆t.

Unconditional default probabilities are given by

P (τ ≤ t) = 1 − E[e−
∫ t

0
λsds]

which shows that default probabilities in an intensity-based framework can
be calculated using techniques from interest rate modeling.

Assume there are P different issuers. To model correlation between issuers
I follow Mortensen (2006) and assume that the intensity of each issuer can
be written as the sum of an idiosyncratic component and a scaled common
component

λi,t = aiYt + Xi,t (1)

where ai > 0, i = 1, ..., P are constants and Y,X1, X2, ..., XP are independent.
The common factor Y creates dependence in defaults of different issuers and
may be viewed as governing economic performance of the economy while Xi

governs the idiosyncratic default risk of firm i. ai is the sensitivity of firm
i to the performance of the economy and is relevant because in the case of
ai = 1, i = 1, ..., P , which is assumed in Duffie and Gârleanu (2001), the
common factor would have to be smaller than the smallest intensity thereby
restricting the amount of default correlation the model can generate.

Both the common factor and idiosyncratic factors are assumed to follow
affine jump diffusions under the risk-neutral measure

dξt = (κ0 + κ1ξt)dt + σ
√

ξtdW
Q
t + dJ

Q
t (2)

where WQ is a Brownian motion, jump times (independent of WQ) are those
of a Poisson process with intensity l ≥ 0, and jump sizes are independent
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of the jump times and follow an exponential distribution with mean µ > 0.
The process is well-defined if κ0 > 0. As a special case, if the jump intensity
is equal to zero the intensity follows a CIR process. In short this process is
denoted

AJD(ξ0, κ0, κ1, σ, l, µ).

As a useful result note that aiξ is again AJD(aiξ0, aiκ0, κ1,
√

aiσ, l, aiµ).

2.2 Risk Premium

For the basic affine process in equation (2) I assume an essentially affine
risk premium for the diffusive risk and constant risk premia for the risk
associated with the timing and sizes of jumps. Cheridito, Filipovic, and
Kimmel (2007) propose an extended affine risk premium as an alternative to
an essentially affine risk premium, which would allow the parameter κ0 to be
adjusted under P in addition to the adjustment of κ1. However, extended
affine models require the Feller condition to hold as discussed in Feldhütter
(2006), and this restriction is violated in 111 out of the 125 single-name
estimations as well as in the CDO estimation in the empirical section2. As
I do not wish to impair the pricing ability of the model because of the risk
premium assumption, I choose an essentially affine risk premium.

This leads to the following dynamics for the factor under the historical
measure P

dξt = (κ0 + κP
1 ξt)dt + σ

√

ξtdW P
t + dJP

t (3)

where the jump times are those of a Poisson process with intensity lP and
the jump sizes are independent of the jump times and follow an exponential
distribution with mean µP > 0.

2.3 Loss Distribution

The loss distribution at time t for P issuers is found semi-analytically by
calculating it conditional on the common factor and then integrating out the

2To illustrate why the Feller condition is necessary in extended affine models consider
the simple diffusion case, dXt = (κQ

0 + κ
Q
1 Xt)dt + σ

√
XtdWQ. The risk premium Λt =

λ0√
Xt

+ λ1

√
Xt keeps the process affine under P but the risk premium explodes if Xt = 0.

To avoid this, the Feller restriction κ0 > σ2

2
under both P and Q ensures that Xt is strictly

positive.
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common factor. It is therefore convenient to define the integrated common
process

It =

∫ t

0

Ysds.

Conditional on It defaults are independent and given as

pi(t|z) = P (τi ≤ t|It = z) = 1 − e−aiz+Ai(t)+Bi(t)Xi,0

where the functions Ai and Bi have closed-form solutions derived in Duffie
and Gârleanu (2001) and restated in Appendix B. The conditional prob-
ability of observing j defaults among K issuers is found by the recursive
algorithm

P (DK
t = j|z) = P (DK−1

t = j|z)(1 − pK(t|z)) + P (DK−1
t = j − 1|z)pK(t|z)

which is due to Andersen, Sidenius, and Basu (2003) (the last term disappears
if j = 0). The unconditional loss distribution is

P (DK
t = j) =

∫ ∞

0

P (DK
t = j|z)f(z)dz (4)

where f is the density function of It. The density function is found by Fourier
inversion of the characteristic function φIt

(u) of I

f(z) =
1

2π

∫ ∞

−∞
e−iuzφIt

(u)du. (5)

Finally, the characteristic function of It is exponentially-affine in z and the
results in Duffie and Gârleanu (2001) give an explicit expression.3

2.4 Synthetic CDO Pricing

CDOs began to trade frequently in the mid-nineties and in the last decade
issuance of CDOs has experienced a massive growth. In a CDO the credit
risk of a portfolio of debt securities is passed on to investors by issuing CDO

3Duffie and Gârleanu (2001) derive an explicit solution for E[exp(q
∫ t

0
Xsds)] where X

is an AJD and q is a real number. As noted by Eckner (2007a) the formula works for q

complex as well.
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tranches written on the portfolio. The tranches have varying risk profiles
according to their seniority. A synthetic CDO is written on CDS contracts
instead of actual debt securities. To illustrate the cash flows in a synthetic
CDO an example that reflects the data used in this paper is useful.

Consider a CDO issuer, called A, who sells protection with notional $0.8
million in 125 5-year CDS contracts for a total notional of $100 million.
Each CDS contract is written on a specific corporate bond, and A receives
quarterly a CDS premium until the contract expires or the bond defaults.
In case of default, A receives the defaulted bond in exchange for face value.
The loss is the difference between face value and market value4.

A issues a CDO tranche on the first 3% losses in his CDS portfolio and B

”buys” this tranche. No money is exchanged at time 0 but the principal on
the tranche is $3 million. If the premium on the tranche is, say, 2,000 basis
points, A pays a quarterly premium of 500 basis points to B on the remaining
principal. If a default occurs on any of the underlying CDS contracts, the loss
is covered by B and his/her principal is reduced accordingly. B continues to
receive the premium on the remaining principal until either the CDO tranche
matures or the remaining principal is exhausted. Since the first 3% portfolio
losses are covered by this tranche it is called the 0-3% tranche. Similarly, A

sells 3 − 7%,7 − 10%,10 − 15%,15 − 30%, and 30 − 100% tranches such that
the total principal equals the principal in the CDS contracts. For a tranche
covering losses between K1 and K2, K1 is called the attachment point and
K2 the exhaustion point.

Next, I find the fair spread on a specific tranche. Consider a CDO tranche
maturing at time T , with quarterly payments t1, t2, ..., tM = T , and covering
portfolio losses from K1 to K2. The coupon rate for the tranche is found
by equating the value of the protection and premium leg and solving for the
coupon rate. Denoting the total portfolio loss in percent as Lt, the tranche
loss is given as

TK1,K2
(L) = max{min{L,K2} − K1, 0}

and the value of the protection leg in a CDO tranche with maturity T is

Prot(0, T ) = E[

∫ T

0

exp(−
∫ t

0

rsds)dTK1,K2
(Lt)]

4Pricing CDS contracts is explained in Appendix A.
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while the value of the premium leg with premium S is

Prem(0, T ; S) = E[
M

∑

j=1

exp(−
∫ tj

0

rsds)S(tj − tj−1)

∫ tj

tj−1

K2 − K1 − TK1,K2
(Ls)

tj − tj−1

ds]

where rs refers to the riskless rate and
∫ tj

tj−1

K2−K1−TK1,K2
(Ls)

tj−tj−1

ds is the remain-

ing principal during the period tj−1 to tj. All expectations are under the
risk-neutral measure. Following Mortensen (2006) I discretize the integral at
premium payment dates and assume that riskfree rates are uncorrelated with
losses and defaults occur halfway between premium payments. With these
assumptions the value of the protection leg is

Prot(0, T ) =
M

∑

j=1

P (0,
tj + tj−1

2
)(E[TK1,K2

(Ltj)] − E[TK1,K2
(Ltj−1

)])

where t0 = 0 while the value of the premium leg is

Prem(0, T ; S) = S

M
∑

j=1

(tj − tj−1)P (0, tj)(K2 − K1 −
E[TK1,K2

(Ltj−1
)] + E[TK1,K2

(Ltj)]

2
).

The tranche premium S solves Prot(0, T ) = Prem(0, T ; S).

2.5 A Parsimonious Model of Single- and Multi-Name

Default

The model for default probabilities and correlations outlined in section 2.1
has in its most general form 126 latent processes with associated parameters,
so it is necessary to simplify the model considerably in order to estimate
the parameters and latent variables. In the following a more parsimonious
version of the general model is outlined and in the section 5 these assumptions
are thoroughly examined.

I impose the restrictions

κ1,i = κ1,Y (6)

σi =
√

aiσY (7)

µi = aiµY (8)
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such that the default intensity of issuer i, λi,t = aiYi + Xi,t, collapses to a
single AJD

AJD(aiY0 + Xi,0, aiκ0,Y + κ0,i, κ1,Y ,
√

aiσY , lY + li, aiµY ).

Also, I assume that the size of the systematic parts of the constant term
in the drift and of the jump intensity are the same for a given issuer and
across issuers such that

ω =
aiκ0,Y

aiκ0,Y + κ0,i

(9)

=
lY

lY + li
(10)

where ω ∈ [0, 1]. Restrictions (6)-(10) are identical to those in Mortensen
(2006) who generalizes the model in Duffie and Gârleanu (2001) (the ais
are all equal to one in Duffie and Gârleanu (2001)). The restrictions imply
that that the default intensity of issuer i is an affine jump diffusion with
parameters

AJD(aiYt + Xi,t,
aiκ0,Y

ω
, κ1,Y ,

√
aiσY ,

lY

ω
, aiµY ).

As already mentioned, if all ais are set to 1 this implies that Y has to
be smaller than the smallest intensity among the P issuers at any point
in time, seriously restricting the size of Y . Therefore, issuers with small
intensities should have small ais and I assume that for a given issuer, ai is
equal to the average 5-year CDS spread for this issuer across the estimation
period divided by the average 5-year CDS spread across time and issuers.
Consequently, if ai is smaller than one, issuer i has a smaller average 5-year
CDS spread compared to the complete pool of P issuers and vice versa. The
recovery rate is fixed at 35% and Xi(t) is for each date and issuer chosen
such that the 5-year CDS spread is fitted perfectly. As noted by Mortensen
(2006) 35% is consistent with historical evidence. However, the precise value
is not very critical since a higher recovery rate is offset by a higher default
intensity, and only the product of recovery and default intensity is important
in the valuation of CDO tranches.

With these assumptions the parameters (under the risk-neutral measure)
to be estimated are κ0,Y , κ1,Y , σY , µY , lY , ω as well as the path the common
factor Y1, ..., YT where T is the number of days in the sample.

To summarize, for each parameter combination of κ0,Y , κ1,Y , σY , µY , lY , ω,

Y1, ..., YT the procedure for calculating CDO tranche prices is the following:
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• Find ai as the average CDS spread for issuer i in the estimation period
divided by the total average CDS spread for all issuers. The ais are
independent of the specific parameter values and are calculated only
once.

• For the first day in the sample, t = 1, find for each issuer Xi,t such that
this issuer’s 5-year CDS spread is fitted perfectly. This yields values of
the idiosyncratic factors X1,t, X2,t, ..., XP,t and CDO tranche prices are
calculated for this day.

• Repeat the previous step for the rest of the days in the sample, t =
2, ..., T .

3 Estimation

In the empirical section parameters of the intensity-model are estimated using
the Bayesian approach MCMC5. Parameters and the path and jumps of the
latent basic affine process are estimated on basis of a panel data set of CDS
premia and CDO tranche prices by writing the model on state space form.
To assess model misspecification under the full model, ’marginal models’ are
also separately estimated on panel data sets of CDS premia for each issuer.
The estimation principle is the same for both cases apart from the specific
pricing formulas and priors and estimation method are therefore explained
without reference to the specific data set.

3.1 MCMC Steps

In order to write the model on state space form, the continuous-time speci-
fication in equation (3) is approximated using an Euler scheme

ξt+1 − ξt = (κ0 + κP
1 ξt)∆t + σ

√

∆tξtǫ
ξ
t+1 + Jt+1Zt+1 (11)

where ∆t is the time between two observations and

ǫ
ξ
t+1 ∼ N(0, 1)

Zt+1 ∼ exp(µP )

P (Jt+1 = 1) = lP ∆t.

5For a general introduction to MCMC see Robert and Casella (2004) and for a survey
of MCMC methods in financial econometrics see Johannes and Polson (2003).
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To simplify notation in the following, I denote ΘQ = (κ0, κ1, l, µ, σ, ω), ΘP =
(κP

1 , lP , µP ), and Θ = (ΘQ, ΘP ).
At time t = 1, ..., T N prices are recorded and they are stacked in the N×1

vector St
6. S denotes the N×T matrix with St in the t’th column. Prices are

assumed to be observed with measurement error, so the observation equation
is

St = f(ΘQ, ξt) + ǫt, ǫt ∼ N(0, Σǫ) (12)

and f is the pricing formula.
The interest lies in samples from the target distribution p(Φ, Σǫ, ξ, J, Z|S).

The Hammersley-Clifford Theorem (Hammersley and Clifford (1970) and Be-
sag (1974)) implies that samples are obtained from the target distribution
by sampling from a number of conditional distributions. Effectively, MCMC
solves the problem of simulating from a complicated target distribution by
simulating from simpler conditional distributions. If one samples directly
from a full conditional the resulting algorithm is the Gibbs sampler (Geman
and Geman (1984)). If it is not possible to sample directly from the full
conditional distribution one can sample by using the Metropolis-Hastings al-
gorithm (Metropolis et al. (1953)). I use a hybrid MCMC algorithm that
combines the two since not all conditional distributions are known. Specifi-
cally, the MCMC algorithm is given by (where Θ\θi

is defined as the param-
eter vector Θ without parameter θi)

7

6Specifically, St records 5 CDO tranche prices with a maturity of 5 years on each day
when estimating the full model while St records 3 CDS prices of maturities 1, 3, and 5
year when estimating parameters of individual CDS issuers.

7All random numbers in the estimation are draws from Matlab 7.0’s generator which is
based on Marsaglia and Zaman (1991)’s algorithm. The generator has a period of almost
21430 and therefore the number of random draws in the estimation is not anywhere near
the period of the random number generator.
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p(θi|ΘQ
\θi

, ΘP , Σǫ, ξ, J, Z, S) ∼ Metropolis-Hastings

p(κP
1 |ΘQ, ΘP

\κP
1

, Σǫ, ξ, J, Z, S) ∼ Normal

p(lP |ΘQ, ΘP
\lP , Σǫ, ξ, J, Z, S) ∼ Beta

p(µP |ΘQ, ΘP
\µP , Σǫ, ξ, J, Z, S) ∼ Inverse Gamma

p(Σǫ|Θ, ξ, J, Z, S) ∼ Inverse Wishart

p(ξ|Θ, Σǫ, J, Z, S) ∼ Metropolis-Hastings

p(J |Θ, Σǫ, ξ, Z, S) ∼ Bernoulli

p(Z|Θ, Σǫ, ξ, J, S) ∼ Exponential or Restricted Normal

Details in the derivations of the conditionals and proposal distributions in
the Metropolis-Hastings steps are given in Appendix C. Both the parameters
and the latent processes are subject to constraints and if a draw is violating
a constraint it can simply be discarded (Gelfand et al. (1992)).

4 Data

This paper uses daily quotes from MarkIt Group Limited. MarkIt receives
data from more than 50 global banks and each contributor provides pricing
data from its books of record and from feeds to automated trading systems.
These data are aggregated into composite numbers after filtering out outliers
and stale data and a price is published only if minimum three contributors
provide data8.

The focus in the empirical part of the paper is on the 5-year Dow Jones
CDX North America Investment Grade Index in the period March 21, 2006
to September 20, 2006. The index is updated semiannually and the index for
this period is called CDX NA IG Series 6. The maturity of the index is June
20, 2011. Daily CDO tranche prices for the 0−3%, 3−7%, 7−10%,10−15%,
and 15−30% tranches are not available for the first 7 days, so the daily data
used in estimation is from March 30, 2006 to September 20, 2006. There are
holidays on April 14, April 21, June 3, July 4, and September 4 leaving in
total 120 days with prices available. The quoting convention for the equity

8Other papers using MarkIt data are Jorion and Zhang (2006), Zhu (2006), and Micu,
Remolona, and Wooldridge (2004).
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tranche(the 0 − 3% tranche) differs from that of other tranches. Instead of
quoting a running premium, the equity tranche is quoted in terms of an up-
front fee. Specifically, an up-front fee of 30% means that the investor receives
30% of the tranche notional at time 0 plus a premium of 500 basis points per
year paid quarterly.

In addition to CDO tranche prices, 5-year CDS spreads for the 125 un-
derlying constituents are used in the estimation of the multi-name default
model.9 The number of observations in the estimation of the multi-name de-
fault model is therefore 15,600: 125 5-year CDS spreads and 5 CDO tranche
prices observed on 120 days.

Also, one-factor affine jump-diffusions are fitted to a panel data set of
CDS spreads for each issuer. The panel data used in this estimation is based
on daily 1-, 3-, and 5-year CDS premia from October 27, 2003 to October
26, 2006.10.

Table 1 shows summary statistics of the CDS and CDO data.

[Table 1 about here.]

For riskless rates I use LIBOR and swap rates since Feldhütter and Lando
(2007) show that swap rates are a more accurate proxy for riskless rates than
Treasury yields. 3-, 6-, and 9-months riskless zero coupon bonds are calcu-
lated from 3-, 6-, and 9-months LIBOR rates (taking into account money

9The underlying contracts for 5-year CDS spreads in the period March 21, 2006 to
June 19, 2006 have maturity June 20, 2011, consistent with the maturity of 5-year Dow
Jones CDX North America Investment Grade Index whose tranche prices are quoted in
the same period. However, for the period June 20-September 19, 2006, the maturity of
the underlying 5-year CDS contracts is September 20, 2011. To correct for the maturity
mismatch between the CDO and the underlying CDS contracts, all CDS prices are adjusted
in the following way: On each date, all CDS spreads are adjusted with the same factor
such that the average CDS spread match the CDX NA IG Index level reported by MarkIt.
The adjustment factor is almost constant at 0.94 for the period June 20-September 19. For
September 20, 2006, the adjustment factor is 0.8843 since the maturity for CDS contracts
on this date is December 20, 2011.

10A few issuers have missing data points in the period, and the missing data points are
filled in by linearly interpolating from the nearest dates where CDS premia matching the
maturity is available. An alternative to interpolation would be to augment the data set
by replacing missing data with simulated data as proposed in Tanner and Wong (1987).
However, since the number of missing observations is small, the simpler interpolation
procedure is preferred. This results in 52 interpolated data points out of a total of 96,631
data points. Also, four companies do not have data for the full estimation period.
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market quoting conventions). For longer maturities riskless bonds are boot-
strapped from swap rates. 1-, 2, 3-, 4-, and 5-year swap rates are collected
and par rates at semiannual intervals are interpolated using cubic spline. The
discount curve at these semiannual intervals is found by bootstrapping the
par rates. Finally, discount curve values at other maturities are found by
interpolating zero coupon bond prices using again cubic spline.

5 Results

5.1 Model Misspecification

The parsimonious model outlined in section 2.5 is based on a number of
simplifying assumptions. An important implication is that CDS spreads of
an individual issuer can be adequately described by a one-factor affine jump-
diffusion. To see, whether this assumption is reasonable a one-factor model
is fit to a panel data set of 1-, 3-, and 5-year CDS spreads over a period of
three years for each issuer (the data is described in the previous section 4).
In these 125 estimations, the measurement errors in observed CDS spreads
are assumed to be uncorrelated across time and maturity and with identical
variances, such that Σǫ in (12) is diagonal with a common variance s2 in the
diagonal. In addition, the jump intensity under the risk-neutral measure is set
to 1 since it is very difficult to identify l and µ separately. Also, the number
of simulations in the burn-in period is 30,000 and in the estimation period
120,000. Every 120’th simulation in the estimation is saved. A summary of
parameter estimates are given in Table 211.

[Table 2 about here.]

A goodness-of-fit measure of the one-factor model for each issuer is given
by the estimated parameter s which measures the standard deviation of pric-
ing errors. A low s implies a good fit while a high s implies a bad fit. Since the
average CDS bid-ask spreads are around 5-6 basis points, a value of s around

11For a few issuers the estimated mean jump size µP under the historical measure is
very large. This occurs because there were no jumps in the sample period for these issuers,
and therefore there is no information in the data about the size of jumps. Using a flat
prior on the mean jump size implies that there is no prior information on the jump size
either, resulting in arbitrary estimates.
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3 - half the bid-ask spread - indicates a very good fit12. As seen in Table 2,
the average value of s is 3.72 across all estimations and therefore a one-factor
affine jump diffusion model provides a good fit to the term structure of CDS
spreads of the issuers underlying the CDX NA IG Index. However, there are
a few issuers where the one-factor model provides an inaccurate description
of the CDS term structure over time. The firm with the worst goodness-of-fit
is Harrah’s Operating Company, a company within the casino entertainment
industry, since the estimated parameter s = 11.1 is highest among all firms.

The actual and fitted CDS spreads along with jump probabilities are
shown in Figure 1. We see that CDS spreads are fitted reasonably well, but
on October 2, 2006, a jump in CDS spreads occurred and they more than
doubled on this day. This jump is due to an acquisition proposal by Apollo
Management and Texas Pacific Group, an offer that was ultimatively ac-
cepted on December 19. After the acquisition the debt in Harrah’s increased
and foreseeing this debt increase Fitch on October 2, 2006 downgraded Har-
rah’s from investment grade to speculative grade.

The one-factor model is incapable of matching CDS spreads after the
acquisition offer, which suggests that a one-factor model for default risk is too
simple a model for a firm that switches from investment grade to speculative
grade. Consistent with this view, Duffee (1999) finds that default risk is
more explosive under the equivalent martingale measure for low-rated firms
than for high-rated firms. However, as seen in Figure 1 spreads are reasonably
matched before the offer - including the period for which the CDO estimation
is done.

[Figure 1 about here.]

American International Group, a major American insurance company, is
an example of an issuer where the one-factor affine jump-diffusion model is
a sufficiently rich model to capture the dynamics of CDS spreads as seen in
Figure 2. There are several jumps in spreads and periods of both high and
low spreads, but in all periods the dispersion in spreads across maturities are
well-matched.

[Figure 2 about here.]

12On February 9 2007, the average bid-ask spread on 5-year CDS contracts underlying
the CDX NA IG Series 7 was 5.44 basis points according to CreditFlux.
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The evidence in the tables along with the two examples suggest that
a one-factor jump-diffusion model is a good description of the majority of
issuers underlying the Dow Jones North American Investment Grade Index.

In addition to the assumption that CDS spreads can be modelled as
one-factor processes section 2.5 outlined further assumptions regarding the
parameters governing the risk-neutral dynamics of the processes. Several
assumptions relate to the choice of issuer specific ai’s defined in equation (1)
and chosen as the issue specific average 5-year CDS spread over the estimation
period divided by the total average 5-year CDS spread. They are:

• Jump intensities li are identical across issuers. Assumption (10) im-
plies that the jump intensities of all issuers are the same. As mentioned
previously it is possible to identify the product of jump intensity and
size, li ×µi, but difficult to identify each component separately. There-
fore, it is in practice no restriction on the dynamics of default intensities
to restrict the jump intensities to be the same.

• The parameter κ0i
is linear in ai. Assumption (9) states that κ0i

is
linear in ai and the lower-right graph in Figure 3 shows that the as-
sumption is a reasonable. This is underpinned by the fact that the
confidence bands of κ0,i contain the fitted line for 98 out of the 125
issuers.

• Jump product li × µi is linear in ai. Assumptions (8) and (10) imply
that the jump intensity and size products li×µi are linear in the ais, so
an issuer with a high li × µi should have a high ai and vice versa. The
product li×µi is plotted against ai for each issuer in the top-right graph
in Figure 3 along with a fitted line illustrating the linear relationship.
Although there are some issuers for which their product li × µi is too
low relative to their ai’s the graph shows a linear relationship and the
confidence bands of li × µi contain the fitted line for 89 out of the 125
issuers.

• Diffusion volatility σ2
i is linear in ai. The diffusion volatility is linear

in the ai’s according to assumption (7) such that issuers with high
default probabilities have high diffusion volatility. The top-left graph
in Figure 3 plots σ2

i against ai for each issuer. The graph shows that
high default probability implies high diffusion volatility although the
linear relationship is not perfect. The confidence bands of σ2

i contain
the fitted line for 61 out of 125 issuers.
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• Mean reversion κ1,i is constant across issuers. Finally, the mean re-
version coefficient of all issuers is the same according to assumption
(6) and the bottom-left graph in Figure 3 plots κ1,i against ai for each
issuer. A fitted horizontal line is drawn to illustrate that κ1,i and ai

are unrelated for each issuer. The graph shows that the mean-reversion
coefficient is unrelated to ai. Also, 114 out of 125 issuers have a posi-
tive mean reversion coefficient implying an explosive process. Since the
sign of the mean reversion coefficient is largely the same across issuers
and the coefficient is in the range of around 0-0.6 there is a large degree
of homogeneity regarding the mean reversion parameter. However, the
confidence bands of κ1,i contain the fitted line for only 10 out of 125
issuers. Overall, it is reasonable to assume that the mean reversion co-
efficients have the same sign and they lie in the range of 0-0.6, but they
are estimated with high precision and statistically they are different
from each other.

[Figure 3 about here.]

Overall, this section shows that a one-factor affine jump-diffusion model
provides a good fit to investment grade single-name issuers and that most
of the assumptions outlined in section 2.5 are reasonable. The most critical
assumptions is that the mean reversion coefficients of all issuers are identical:
Although more than 90% of the issuers have a positive coefficient of 0− 0.6,
implying explosive processes, they are statistically clearly different.

5.2 CDO Parameter Estimates and Pricing Results

The multi-name default model is estimated on basis of panel data set of 120
daily CDO tranche prices and CDS contracts as described in section 4. The
measurement error matrix Σǫ in (12) is assumed to be diagonal and the prior
on the measurement errors is that they are equal to the bid-ask spreads of
the tranches13. The number of simulations in the burn-in period is 20,000
and in the estimation period 10,000 and every 10’th simulation is saved.

13Bid-ask spreads in Mortensen (2006) are used: 0.8% for the 0-3% tranche, 6.8bp for
the 3-7% tranche, 5.4bp for the 7-10% tranche, 3bp for the 10-15% tranche, and 1bp for
the 15-30% tranche. The prior is chosen to be inverse Wishart distributed with parameters
V = diag(0.0082, 0.0682, 0.0542, 0.032, 0.012) and m = 10, 000. Since m = 10, 000 the prior
is weighted strongly compared to the data. Further estimation details are given in C.3.

18



Parameter estimates are given in Table 3. In the table we see that σ =
3.67 in the CDO estimation is close to firm averages of 3.56. We also see that
κ1 = 0.465 which implies that the default intensity is explosive consistent
with the underlying firms’ default dynamics. The value is higher than the
average value of 0.164 for the individual firms, but is not unreasonably high
as the estimates in Table 2 shows. Since the average value of ai is 1, the values
of κ0, lµ, and σ2 should match the average parameter values of the underlying
firms. κ0 = 1.59 × 10−5 is estimated at a somewhat low value compared to
the firm average of 4.9×10−4 but Table 2 shows that a number of firms have
a lower value of κ0 than the value implied from the CDO estimation. The
product lµ = 3.92×10−3 is estimated at a higher value then the firm average
of 7.29 × 10−4 and it is higher than the estimated product for any of the
underlying issuers.

The parameter estimates in the CDO estimation are largely consistent
with the estimates from the univariate CDS premium estimations. However,
the common factor in the CDO estimation is more explosive and has a higher
product of jump intensity and jump size than implied from the individual
CDS estimations. Since both estimations match the 5-year CDS premia, it
must be that the initial value of the common factor is lower in the CDO
estimation. For maturities up to five years the average CDS premia in the
CDO estimation are consistent with actual average CDS premia - the lower
value of the common factor is offset by a higher product of jump intensity and
jump sizes. For maturities larger than five years the implied CDS premia in
the CDO model are higher than those implied from the univariate estimations
because the mean aversion coefficient κ1 = 0.465 plays a dominant role at
longer maturities. Consequently, it is likely that CDO tranche prices at
maturities more than five years would be overestimated.

[Table 3 about here.]

The pricing ability of the affine model can be examined by means of
average pricing errors and RMSEs, which are given in Table 4. We see that
on average the model has a tendency to produce spreads that are slightly too
low for the 7−10% tranche but for the other four tranches the model matches
average spreads well. Comparing the RMSEs with the only other study
that has conducted a time series analysis of CDO tranche prices, Longstaff
and Rajan (2006), it appears that the affine model prices senior tranches
more accurately than the three-factor portfolio model in their paper while
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lower tranches are priced more accurately in their model14. Since spreads
of the five tranches are very different in size, a more relevant measure is
the relative pricing errors and RMSEs which are also given in table 4. The
relative mean errors show that the 10−15% tranche has the worst relative fit
and the relative RMSEs show in contrast to absolute RMSEs that the most
risky tranches are fitted better than the senior tranches. The conclusions
from absolute pricing error results are more or less reversed when looking at
relative pricing errors. Figure 4 shows actual and fitted tranche prices over
time and the figure shows why relative pricing errors for senior tranches are
high: the model prices the first two tranches accurately over time while there
is not enough variability in model-implied senior spreads to match actual
senior spreads. This aspect of the model will also show up in the hedging
results in the next section.

[Table 4 about here.]

[Figure 4 about here.]

Overall, the model has a good fit to the prices of the first two tranches,
underestimates the prices of the third tranche slightly, and captures the av-
erage price level of the two most senior tranches. However, the model misses
the price variation in the two senior tranches. What makes it possible for the
model to fit the average senior spreads is the inclusion of jumps. As noted
in Mortensen (2006), without jumps the model is a pure diffusion model
and is unable to generate enough default correlation to match senior tranche
spreads. Therefore, it is the jump parameters that govern senior tranche
prices; basically it is the product l × µ. Since both jump intensity l and
expected jump size µ are constant, the senior tranche spreads are almost
constant.

The model can in a parsimonious way be changed such that the time
series properties of senior spreads are better captured. If jump intensities
are made state dependent, such that the jump intensity for the process in
equation (2) is changed from l > 0 to l0 + l1ξ, with l0 > 0 and l1 > 0, the
model is still within the affine framework. This would generate more time
variation in senior spreads since the spreads would be positively correlated

14For the 15− 30% tranche the RMSE in this paper is 0.74 while the average RMSE in
their paper is 3.59. For the 10 − 15% tranche the RMSE in this paper is 2.09 while the
average RMSE in their paper is 4.42.
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with the realization of the common factor through l1. However, senior spreads
are negatively correlated with the common factor in the current model, and
a second common factor (with time-varying jump intensity) would likely be
necessary to accurately capture senior spread dynamics. This is an interesting
topic for future research.

6 Hedging

In correlation trading investors take views on the future direction of credit
correlation and structure trades that are exposed to the level of default cor-
relation but hedged against small movements in credit spreads15. Hedging
changes in market value of for example the equity tranche due to changes in
the underlying CDS spreads can be done by entering an offsetting position
in 1) another tranche, typically the 3 − 7% tranche, 2) the CDX index, or
3) the underlying CDS contracts. However, the ’delta’, the amount invested
in the offsetting position, is model-dependent and the quality of the spread
hedge depends strongly on the quality of the model used to calculate deltas.
Therefore, for such correlation trading as well as for risk management in
general, it is important that the model used correctly specifies the relation
between changes in the underlying CDS spreads and changes in the market
value of CDO tranches.

The literature on CDO modeling has generally focused on the ability of
models to fit tranche prices on a single or a few dates while the accuracy
of model-implied deltas is not well examined. An exception is Houdain and
Guegan (2006) who examine different models’ ability to hedge an equity
tranche by an offsetting position in the first mezzanine tranche. However,
whether one hedges a CDO tranche with another tranche, the CDX index, or
the underlying CDS contracts, a necessary condition for a successful hedge
is that the model correctly predicts the change in CDO tranche price with
respect to any changes in the underlying CDS spreads. I therefore conduct
the following test of the hedging ability of a pricing model: For a given day
the spread of a CDO tranche is calculated. Keeping the parameters of the
model fixed a new spread is calculated based on the CDS spreads of tomor-
row. The difference between the two spread is the model-predicted change in
tranche spread due to spread changes in the underlying CDS contracts. Fi-
nally, the model-predicted spread change is compared with the actual spread

15See for example Merrill Lynch (2003) and Belsham, Vause, and Wells (2005).
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change. The average difference between model-implied and actual spread
changes should be close to zero and comparing two models, the better model
should have lower RMSEs. This procedure measures how well a model hedges
spread risk, but even a perfect model will have positive RMSEs since changes
in tranche spreads due to changes in correlation is not accounted for (and
should not in a correlation trade)16. The hedge ratios do not represent an
actual hedging strategy since the hedge ratios at time t are constructed us-
ing information at time t + 1, but they do strongly indicate the accuracy of
’real-time’ hedge strategies.

The commonly used one-factor Gaussian model with homogeneous default
intensities is chosen as a benchmark model in comparing the hedging ability
of the affine model. The model plays a role in the CDO market similar to
that of the Black-Scholes model in the options market, and a brief review of
the model is given in Appendix D. For every day and tranche, the correlation
coefficient in the Gaussian model is fitted to the actual tranche price on that
day and the model-predicted spread change is calculated on basis of this
correlation.

In addition to the Gaussian model, I also report hedging results for a
simple Random Walk where the model-implied price change is zero every
day. Table 5 presents the results.

[Table 5 about here.]

In the table we see that the hedging performances of the affine and
Gaussian model are comparable for the 3 − 7% tranche, while the affine
model is significantly better than the Gaussian model in hedging the equity
tranche. Figure 5 shows why the affine model does better in hedging the
equity tranche. The deltas of the Gaussian model are too low while the
affine model has deltas matching actual deltas better. This is seen in the
figure because model-implied spread changes in the affine model in general

16For simplicity, I look at changes in tranche spreads instead of changes in tranche
prices. The change in market value is given as the change in spread times risky duration

(see Houdain and Guegan (2006) for a definition of risky duration). The equity tranche is
an exception because a change in up-front fee is a direct measure of a change in market
value. To see this, consider entering an equity tranche as protection buyer at time t and
paying an up-front fee of Ut. At time t+1 the position can be closed by entering an equity
tranche as protection seller and receiving an up-front fee of Ut+1. All future cash flows
are matched and at t + 1 the gain/loss is Ut+1 − Ut times the notional (ignoring yield on
Ut between t and t + 1).
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match actual spread changes well, while the price changes in the Gaussian
copula are too small in response to CDS spread changes. Therefore, using a
Gaussian copula in hedging spread risk in the equity tranche underestimates
the price sensitivity to CDS spread changes, while the affine model better
matches the sensivities.

From the table we also see that both in terms of average hedging errors
and RMSEs the Gaussian copula hedges senior tranches better than the affine
model. In fact, the affine model is only slightly better than a Random Walk.
In light of the discussion in the previous section, namely that the prices of
senior tranches in the affine model are almost constant, it is not surprising
that the affine model does not hedge well.

[Figure 5 about here.]

7 Conclusion

I estimate a dynamic intensity-based model for multi-name default on an
extensive data set of 15,600 CDS and CDO tranche spreads on the Dow
Jones North American Investment Grade Index. The modeling framework
was first proposed by Duffie and Gârleanu (2001) and the estimated model
allows heterogeneous default intensity dynamics as in Mortensen (2006).

The empirical results document that the assumptions underlying the
model are reasonable and that the model can match average CDO tranche
spreads. The variation over time in actual tranche spreads is matched well
for the most risky tranches and the model’s sensitivities in the equity tranche
with respect to underlying CDS premium movements is more in accordance
with actual sensitivities than in the Gaussian copula. The last result strongly
suggests that the intensity-based model is more accurate in hedging the eq-
uity tranche than the Gaussian copula.

The empirical study in this paper points to the importance of testing CDO
pricing models along several dimensions such as model assumptions, pricing
ability in both the cross section and time series, and hedging performance.
For the model examined in this paper, the results suggest that incorporating
time-varying jump intensity can in a parsimonious way improve pricing and
hedging performance of senior tranches. It is left for future research to modify
and test a model with this modification.
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A CDS Pricing

This section briefly explains how to price credit default swaps. A more
thorough introduction is given in Duffie (1999).

A CDS contract is an insurance agreement between two counterparties
written on the default event of a specified underlying reference obligation.
The protection buyer pays fixed premium payments periodically until a de-
fault occurs or the contracts expires, whichever happens first. If default oc-
curs, the protection buyer delivers the reference obligation to the protection
seller in exchange for face value.

A number of assumptions are made in order to price the CDS contract.
First, assume that the recovery rate δ is constant. Second, assume that
default-free interest rates and default probabilities are independent (under
the risk-neutral measure). Third, assume that default occurs halfway be-
tween two premium payments.

To be specific, consider a CDS with maturity T and denote ρ the time
between two premium payments (the CDS contracts considered in the main
text have quarterly payments, i.e. ρ = 1

4
). If τ is the time of default and

premium payments occur at t1, t2, ..., tT/ρ, the value of the protection leg at
time t0 = 0 is

Prot(0, T ) = EQ[
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and the CDS premium S is found by letting the value of the protection leg
equal the value of the premium leg, Prot(0, T ) = Prem(0, T ; S).

B Default Probabilities for Affine Jump Dif-

fusion

For the one-dimensional affine jump-diffusion Xt,

dXt = (κ0 + κ1Xt)dt + σ
√

XtdWt + dJt,

whose jump times are those of a Poisson process with intensity l and the
jump sizes are independent of the jump times and follow an exponential dis-
tribution with mean µ, the following result follows from Duffie and Gârleanu
(2001),

E[exp(−
∫ t+s

t

Xudu)] = eα(s)+β(s)Xt ,

where

β(s) =
λ1(s)

λ2(s)
,

α(s) = −2κ0

σ2
log

(−λ2(s)

γ

)

+
κ0

c1

s +

−2lµ

σ2 + 2µκ1 − 2µ2
log

(λ1(s)µ − λ2(s)

γ

)

+ (
lµ

c1 − µ
)s,

γ =
√

κ2
1 + 2σ2

λ1(s) = 1 − e−γs

λ2(s) =
1

2
(κ1 + γ)λ1(s) − γ

c1 =
1

2
(κ1 − γ)
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C Conditional Posteriors in MCMC Estima-

tion

In this Appendix the conditional posteriors stated in the main text and used
in MCMC estimation are derived. Bayes’ rule

p(X|Y ) ∝ p(Y |X)p(X)

is repeatedly used in the calculations.

C.1 Conditionals of S, ξ, J, and Z

The conditional posteriors of S, ξ, J , and Z are used in most of the conditional
posteriors for the parameters and are therefore derived in this section.

C.1.1 p(ξ|Θ, Σǫ, J, Z) and p(S|Θ, Σǫ, ξ, J, Z)

With the discretization in (11) we have that

p(ξ|Θ, Σǫ, J, Z) =
(

T
∏

t=1

p(ξt|ξt−1, Θ, Σǫ, J, Z)
)

p(ξ0)

= p(ξ0)
T

∏
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1

σ
√

∆tξt−1

exp
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− 1

2
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2

σ2∆tξt−1

)
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−T ξ

− 1

2
x exp

(

− 1

2

T
∑
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1 ∆t + 1)ξt−1 + JtZt)]

2

σ2∆tξt−1

)

(13)

where ξx =
∏T

t=1 ξt−1. Note that the posterior p(ξ|Θ, Σǫ, J, Z) differs from
p(ξ|Θ, Σǫ, J, Z, S).

The conditional posterior of S is found as

p(S|Θ, Σǫ, ξ, J, Z) =
T

∏

t=1

|Σǫ|−
1

2 exp
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− 1

2
[St − f(ΘQ, ξt)]

′Σ−1
ǫ [St − f(ΘQ, ξt)]

)

= |Σǫ|−
T
2 exp

(

− 1

2

T
∑

t=1
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, (14)
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where êt = St − f(ΘQ, ξt). If Σǫ is diagonal this simplifies to

p(S|Θ, Σǫ, ξ, J, Z) ∝
N
∏

i=1

Σ
−T

2

ǫ,ii exp
(

− 1

2Σǫ,ii

T
∑

t=1

ê2
t,i

)

.

This posterior does not depend on J, Z, κP
0 , and κP

1 .

C.1.2 p(Z|Θ, Σǫ, ξ, J, S) and p(J |Θ, Σǫ, ξ, Z, S)

Since Zt is exponentially distributed we have that

p(Z|Θ, Σǫ, ξ, J, S) ∝ p(S|Θ, Σǫ, ξ, J, Z)p(Z|Θ, Σǫ, ξ, J) (15)

∝ p(ξ|Θ, Σǫ, J, Z)p(Z|Θ, Σǫ, J)

∝ p(ξ|Θ, Σǫ, J, Z)
T

∏

t=1

1

µP
exp(− Zt

µP
)

∝ p(ξ|Θ, Σǫ, J, Z)(µP )−T exp(−Z•
µP

) (16)

where Z• =
∑T

t=1 Zt.

The jump time Jt can only take on two values so the conditional posterior
for Jt is Bernoulli. The Bernoulli probabilities are given as

p(J |Θ, Σǫ, ξ, Z, S) ∝ p(S|Θ, Σǫ, ξ, J, Z)p(J |Θ, Σǫ, ξ, Z) (17)

∝ p(ξ|Θ, Σǫ, J, Z)p(J |Θ, Σǫ, Z)

∝ p(ξ|Θ, Σǫ, J, Z)p(J |Θ)

∝ p(ξ|Θ, Σǫ, J, Z)
T

∏

t=1

(

(lP ∆t)
Jt(1 − lP ∆t)

1−Jt

)

∝ p(ξ|Θ, Σǫ, J, Z)(lP ∆t)
J•(1 − lP ∆t)

T−J• (18)

with J• =
∑T

t=1 Jt

C.2 Conditional Posteriors

The conditional posteriors are derived and the choice of priors for the poste-
riors are discussed in this section.
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1. The conditional posterior of the error matrix Σǫ is given as

p(Σǫ|Θ, ξ, J, Z, S) ∝ p(S|Θ, Σǫ, ξ, J, Z)p(Σǫ|Θ, ξ, J, Z)

∝ p(S|Θ, Σǫ, ξ, J, Z)p(Σǫ|Θ)
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′
t)

)

p(Σǫ|Θ).

The last line follows because −1
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′
t) = −1

2
tr(Σ−1

ǫ

∑T
t=1 êtê
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t). If

the prior on Σǫ is independent of the other parameters and has an in-
verse Wishart distribution with parameters V and m then p(Σǫ|...) is
inverse Wishart distributed with parameters V +

∑T
t=1 êtê

′
t and T +m.

The special case of V equal to the zero matrix and m = 0 corresponds
to a flat prior.

2. The conditional posterior of κP
1 is found as

p(κP
1 |Θ\κP

1

, Σǫ, ξ, J, Z, S) ∝ p(S|Θ, Σǫ, ξ, J, Z)p(κP
1 |Θ\κP

1

, Σǫ, ξ, J, Z)

∝ p(κP
1 |Θ\κP

1

, Σǫ, ξ, J, Z)

∝ p(ξ|Θ, Σǫ, J, Z)p(κP
1 |Θ\κP

1

, Σǫ).

According to equation (13) we have

p(κP
1 |...) ∝ exp

(

− 1

2

T
∑

t=1

[ξt − (κ0∆t + (κP
1 ∆t + 1)ξt−1 + JtZt)]

2

σ2∆tξt−1

)

p(κP
1 |Θ\κP

1

, Σǫ)

so

p(κP
1 |...) ∝ exp

(

− 1

2

T
∑

t=1

[atκ
P
1 − bt]

2

σ2∆tξt−1

)

p(κP
1 |Θ\κP

1

, Σǫ)

where

at = −∆tξt−1

bt = κ0∆t + ξt−1 + JtZt − ξt.
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Using the result in Frühwirth-Schnatter and Geyer (1998) p.10 and
assuming flat priors we have that κP

1 ∼ N(Qm,Q) where

m =
T

∑

t=1

atbt

σ2∆tξt−1

Q−1 =
T

∑

t=1

a2
t

σ2∆tξt−1

.

3. For the jump size parameter µP the conditional posterior is found as

p(µP |Θ\µP , Σǫ, ξ, J, Z, S) ∝ p(S|Θ, Σǫ, ξ, J, Z)p(µP |Θ\µP , Σǫ, ξ, J, Z)

∝ p(ξ|Θ, Σǫ, J, Z)p(µP |Θ\µP , Σǫ, J, Z)

∝ p(Z|Θ, Σǫ, J)p(µP |Θ\µP , Σǫ, J)

∝ p(Z|Θ)p(µP |Θ\µP , Σǫ)

∝ (µP )−T exp(−Z•
µP

)p(µP |Θ\µP , Σǫ).

If the prior on µP is flat then the conditional posterior inverse gamma
distributed with parameters Z• and T − 1.

4. The same calculations as for the jump-size parameter µP yields the
conditional posterior of the jump-time parameter lP as

p(lP |Θ\lP , Σǫ, ξ, J, Z, S) ∝ p(J |Θ)p(lP |Θ\lP , Σǫ)

∝
(

(lP ∆t)
J•(1 − lP ∆t)

T−J•

)

p(lP |Θ\lP , Σǫ).

Assuming a flat prior on lP the conditional posterior of lP ∆t is beta
distributed, lP ∆t ∼ B(J• + 1, T − J• + 1).

5. The parameters σ and κ0 are sampled by Metropolis-Hastings since
the conditional distributions are not known. Denoting any of the two
parameters θi, the conditional distribution is found as

p(θi|Θ\θi
, Σǫ, ξ, J, Z, S) ∝ p(S|Θ, Σǫ, ξ, J, Z)p(θi|Θ\θi

, Σǫ, ξ, J, Z)

∝ p(S|Θ, Σǫ, ξ, J, Z)p(ξ|Θ, Σǫ, J, Z)p(θi|Θ\θi
, Σǫ, J, Z)

∝ p(S|Θ, Σǫ, ξ, J, Z)p(ξ|Θ, Σǫ, J, Z)p(θi|Θ\θi
, Σǫ).

Flat priors on both parameters are assumed.
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6. The parameters κ
Q
1 , lQ, and µQ are sampled by Metropolis-Hastings.

The only difference in the derivation of their conditional distributions
compared to derivation of the distributions of σ and κ0 is that the
distribution of ξ does not depend on these three parameters. Letting
θi represent any of the three parameters, the conditional distribution
is found as

p(θi|Θ\θi
, Σǫ, ξ, J, Z, S) ∝ p(S|Θ, Σǫ, ξ, J, Z)p(θi|Θ\θi

, Σǫ, ξ, J, Z)

∝ p(S|Θ, Σǫ, ξ, J, Z)p(ξ|Θ, Σǫ, J, Z)p(θi|Θ\θi
, Σǫ, J, Z)

∝ p(S|Θ, Σǫ, ξ, J, Z)p(θi|Θ\θi
, Σǫ).

Flat priors on all three parameters are assumed.

7. The latent jump indicators Jt’s are sampled individually from Bernoulli
distributions. To see this, note that equation (18) implies that

p(J |Θ, Σǫ, ξ, Z, S)

∝
T

∏

t=1

exp
(

− 1

2

[ξt − (κ0∆t + (κP
1 ∆t + 1)ξt−1 + JtZt)]

2

σ2∆tξt−1

)( lP ∆t

1 − lP ∆t

)Jt

.

In the actual implementation I use

p(J |Θ, Σǫ, ξ, Z, S)

∝
T

∏

t=1

exp
(

− 1

2

(−2[ξt − (κ0∆t + (κP
1 ∆t + 1)ξt−1)] + JtZt)JtZt

σ2∆tξt−1

)( lP ∆t

1 − lP ∆t

)Jt

since this is numerically more robust.

8. For the latent jump sizes Zt we have according to equation (16) that

p(Z|Θ, Σǫ, ξ, J, S) ∝
T

∏

t=1

exp
(

− 1

2

[ξt − (κ0∆t + (κP
1 ∆t + 1)ξt−1 + JtZt)]

2

σ2∆tξt−1

− Zt

µP

)

so the Zts are conditionally independent and are sampled individually.
If Jt = 0 then Zt is sampled from an exponential distribution with
mean µP . If Jt = 1 tedious calculations show that

p(Zt|Θ, Σǫ, ξ, J, Z\Zt
, S) ∝ [((κP

1 + µP σ2)∆t + 1)ξt−1 − (ξt − κ0∆t) + Zt]
2

σ2∆tξt−1

)

,
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where Zt ≥ 0. Therefore, Zt is drawn from a N((ξt − κ0∆t) − ((κP
1 +

µP σ2)∆t + 1)ξt−1, σ
2∆tξt−1) distribution and the draw is rejected if

Zt < 0. In practice the number of rejections are small17.

9. The latent ξts are sampled individually by Metropolis-Hastings and for
t = 1, ..., T − 1 the conditional posterior is

p(ξt|Θ, Σǫ, ξ\ξt
, J, Z, S) ∝ p(S|Θ, Σǫ, ξ, J, Z, S)p(ξt|Θ, Σǫ, ξ\ξt

, J, Z)

∝ p(St|Θ, Σǫ, ξt, J, Z, S)p(ξt|Θ, Σǫ, ξt−1, ξt+1, J, Z)

∝ p(St|Θ, Σǫ, ξt, J, Z, S)

×p(ξt|Θ, Σǫ, ξt−1, J, Z)p(ξt+1|Θ, Σǫ, ξt, J, Z)

For ξT the conditional posterior is

p(ξT |Θ, Σǫ, ξ\ξT
, J, Z, S) ∝ p(ξT |Θ, Σǫ, ξT−1, J, Z, S)

∝ p(ST |Θ, Σǫ, ξT , J, Z, S)p(ξT |Θ, Σǫ, ξT−1, J, Z)

while for ξ0 it is

p(ξ0|Θ, Σǫ, ξ\ξ0 , J, Z, S) ∝ p(ξ0|Θ, Σǫ, ξ1, J, Z)

∝ p(ξ1|Θ, Σǫ, ξ0, J, Z)p(ξ0).

C.3 Implementation Details

In the RW-MH steps of the MCMC sample, the proposal density is chosen to
be Gaussian, and the efficiency of the RW-MH algorithm depends crucially
on the variance of the proposal normal distribution. If the variance is too
low, the Markov chain will accept nearly every draw and converge very slowly
while it will reject a too high portion of the draws if the variance is too high.
I therefore do an algorithm calibration and adjust the variance in the first
half of the burn-in period in the MCMC algorithm. Roberts et al. (1997)
recommend acceptance rates close to 1

4
and therefore the standard deviation

during the algorithm calibration is chosen as follows: Every 100’th draw
the acceptance ratio of each parameter is evaluated. If it is less than 10
% the standard deviation is doubled while if it is more than 50 % it is cut
in half. This step is prior to the second half of the burn-in period since

17If the draws were frequently rejected the method in Gelfand, Smith, and Lee (1992)
could be used.
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the convergence results of RW-MH only applies if the variance is constant
(otherwise the Markov property of the chain is lost).

In section 2.5 it is stated that for each date Xi(t) is chosen such that the
5-year CDS spread is fitted perfectly. If a price is quoted very low on a given
day compared to the average in the sample period (remember the average
determines the ais) this would restrict the common factor to be very low on
that date. On order to mitigate the effect of possible misquotings, I allow
five CDS spreads not to be fitted perfectly on a given date. Therefore, if a
quoted CDS price is very low and the model-implied CDS price is more than
actual CDS price even with Xi(t) = 0 this is acceptable for a maximum of
five issuers each day and Xi(t) = 0 for these issuers. In the actual estimation
this occurs very few times.

The Fourier inversion in equation (5) is calculated by using Fast Fourier
Transform and the number of points used in FFT is 218. The characteristic
function is not evaluated in every Fourier transform point. Instead, since
the characteristic function is exponential-affine with function A and B, the
functions A and B are splined from a lower number of points. The spline uses
a total number of 40 points. 25 points are spread evenly out in the interval
while 15 points are placed near 0. Also, the integration in (4) is done using
Gauss-Legendre integration and the number of integration points is 50.

D Standard 1-Factor Gaussian Copula Model

In the Gaussian copula model, for each issuer it is assumed that the value of
issuer i’s assets at time t is given as

Xi = aZ +
√

1 − a2ǫi,

where Z, ǫ1, ..., ǫN are independent standard normal random variables. The
correlation between any pairs of Xi and Xj is a2. Defaults are modelled in
an intensity-based setting with constant default intensities through time and
across issuers, i.e. the probability of default for issuer i at time t is given as

pi(t) = 1 − e−λt.

To determine λ the approximation CDS ≈ (1− δ)λ is applied where δ is the
recovery rate and CDS is the average 5-year CDS spread. The recovery rate
δ is set to 40%.
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There is a default barrier xi such that issuer i defaults if Xi < xi and for
time t we have that

pi(t) = P (Xi < xi).

Since Xi is standard normal we have that

xi = Φ−1(pi(t)).

Conditional on Z we have that

pi(t|Z) = P (ǫi <
xi − aZ√

1 − a2
) = Φ(

Φ−1(pi(t)) − aZ√
1 − a2

),

and since we assume that the default probabilities are the same across issuers
we have that the probability of k defaults among N issuers is

Pt(X = k|Z) =

(

N

k

)

p(t|Z)k(1 − p(t|Z))N−k.

The unconditional probability of k defaults at time t is

Pt(X = k) =

∫ ∞

−∞
Pt(k|x)φ(x)dx

and the cumulative probability is

Pt(X ≤ m) =
m

∑

k=0

∫ ∞

−∞
Pt(k|x)φ(x)dx

which can be approximated as shown by Vasiček (1987) as

Pt(X ≤ m) = Φ
(

√
1 − a2Φ−1(m) − Φ−1(pi(t))

a

)

.

The last formula yields the loss distribution on each time t and the formulas
in section 2.4 can be applied to find CDO tranche spreads for a given level
of correlation.
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Figure 1: Actual and fitted CDS spreads and jump probabilities for Har-

rah’s Operating Company, Inc. The top figure shows for Harrah’s Operating
Company, Inc the actual and mean fitted 1-, 3-, and 5-year CDS spreads. The 5-year
spread is the highest, 3-year spread in the middle, and 1-year spread lowest. The bot-
tom figure shows the jump probabilities. At time t the jump probability is calculated
as the mean of the jump indicator across all simulations. In both figures the period
for which the CDO model is estimated is marked by two vertical lines.
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Figure 2: Actual and fitted CDS spreads and jump probabilities for Amer-

ican International Group, Inc. The top figure shows for American International
Group, Inc the actual and mean fitted 1-, 3-, and 5-year CDS spreads. The 5-year
spread is the highest, 3-year spread in the middle, and 1-year spread lowest. The bot-
tom figure shows the jump probabilities. At time t the jump probability is calculated
as the mean of the jump indicator across all simulations. In both figures the period
for which the CDO model is estimated is marked by two vertical lines.
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Figure 3: Assumptions of the parsimonious model. Assumption (6) in the
text imply that the mean-reversion level κ1 for all CDS issuers is the same while
assumptions (7)-(10) imply that σ2, κ0, and l × µ are linear in ai. Since ai is chosen
to be the average 5-year CDS spread for issuer i divided by the total average 5-year
spread for all issuers, this implies that σ2, κ0, and l × µ are linear in the average
CDS spread. The four figures show the relation between σ2, κ0, l×µ, and κ1 and the
average 5-year CDS spread across issuers. Each graph has a fitted line illustrating
the relevant model assumption.
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Figure 4: Actual and model-implied tranche spreads. This graph shows for
the five CDO tranches used in estimation the actual and model-fitted CDO spreads
along with a 95% confidence interval around the model-fitted spreads. The period is
March 30, 2006 to September 20, 2006.
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Figure 5: Hedging the equity tranche. This graph shows the actual spread
changes on the equity tranche (0 − 3%) along with model-predicted spread changes
due to underlying CDS spread changes for the affine model along with the standard
Gaussian copula.
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Tables

CDO spreads, CDX NA IG, March 30, 2006 - September 20, 2006
0-3% 3-7% 7-10% 10-15% 15-30%

mean 29.92% 91.69bp 20.41bp 9.32bp 5.12bp
standard deviation 2.96% 15.54bp 4.30bp 1.59bp 0.75bp

median 30.29% 92.48bp 20.31bp 9.06bp 5.17bp
min 21.97% 65.52bp 13.96bp 6.40bp 3.54bp
max 35.75% 125.02bp 28.97bp 13.02bp 6.84bp
N 120 120 120 120 120

5-year CDS spreads for constituents, March 30, 2006 - September 20, 2006
5y

mean 37.67bp
standard deviation 28.62bp

median 27.97bp
minimum 4.87bp
maximum 208.01bp

N 15, 000

CDS spreads for constituents, October 27, 2003 - October 26, 2006
1y 3y 5y

mean 15.58bp 27.80bp 42.19bp
standard deviation 14.39bp 18.80bp 25.39bp

median 11.07bp 22.94bp 36.12bp
minimum 1.34bp 2.93bp 5.35bp
maximum 215.75bp 228.02bp 259.30bp

N 96, 631 96, 631 96, 631

Table 1: Summary Statistics. This table shows summary statistics for the data used
in estimation. Panel data for the 5-year CDS spreads and all CDO tranche prices
for March 30, 2006-September 20, 2006 is used in estimation of an affine correlation
model. Panel data for the 1-, 3-, and 5-year CDS spread for each underlying issuer for
October 27, 2003-October 26, 2006 is used in estimation of marginal intensity models
for each issuer.
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κ0(×104) κ1 lµ(×104) σ(×102) κP
1

lP µP (×104) s
Mean 4.94 0.164 7.29 3.56 -1.66 6.98e+024 3.72

Median 4.36 0.13 6.2 3.35 -1.61 14.6 3.07
Min 0.0117 -0.0618 1.01 1.34 -4.6 0.111 0.766
Max 27.7 0.71 27.1 18.1 0.121 8.72e+026 11.1

2.5% quantile 0.0343 -0.0257 1.04 1.72 -3.12 0.5 1.18
97.5% quantile 11.3 0.481 15.6 5.4 -0.331 361 8.07

Table 2: Estimates of a one-factor affine jump-diffusion model for CDS issuers. The
Duffie and Gârleanu (2001) model for correlated defaults implies that the marginal de-

fault intensity for all underlying issuers is given as dξt = (κi
0+κi

1ξt)dt+σi
√

ξtdW
Q,i
t +

dJ
Q,i
t under the pricing measure where the jump times arrive with intensity li and

the jump sizes are exponentially distributed with mean µi while the dynamics under
the historical measure is dξt = (κP,i

0 + κ
P,i
1 ξt)dt + σi

√
ξtdWP

t + dJ
P,i
t with jumps ar-

riving with intensity lP,i and the jump sizes are exponentially distributed with mean
µP,i. This table shows summary statistics for univariate estimations for all 125 issuers
underlying the Dow Jones CDX North American Investment Grade Index for the pe-
riod March 21, 2006, to September 20, 2006 (CDX NA IG series 6). For each CDS
estimation all parameters are estimated by taking the median across MCMC draws.
This table shows summary statistics for the parameter estimates across the 125 CDS
issuers. The univariate panel data estimations are based on daily 1-, 3-, and 5-year
CDS premia for the period from October 27, 2003 to October 26, 2006.
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κ0(×105) κ1 σ(×102) l(×103) lµ(×103)
1.59 0.4648 3.668 3.186 3.92

(1.301;1.828) (0.4539;0.4712) (3.607;3.76) (3.023;3.304) (2.427;5.611)

κP
1

lP (×103) lP uP (×104) ω
0.4402 3.377 0.007893 0.9742

(-4.725;5.545) (4.305e-012;1.186e+004) (3.243e-015;44.89) (0.8565;0.9989)√
Σ11(×103)

√
Σ22(×104)

√
Σ33(×104)

√
Σ44(×104)

√
Σ55(×104)

7.998 6.806 5.296 2.99 0.9974
(7.89;8.113) (6.711;6.897) (5.219;5.371) (2.95;3.033) (0.9832;1.011)

Table 3: Parameter estimates of CDO pricing model. This table shows the param-
eter estimates for the multi-name default model outlined in section 2.5. Estimates
parameters are median values. The estimation is done on a panel data set of 5 CDO
tranche prices and 125 CDS 5-year spreads on 120 days from March 30, 2006, to
September 30, 2006. The CDO tranches are the 0 − 3%, 3 − 7%, 7 − 10%,10 − 15%,
and 15 − 30% tranche prices for the CDX North American Investment Grade Index
(Series 6).
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Mean error RMSE

0-3% 0.00142% 0.00787%
(-6.52e-006%;0.00273%) (0.00772%;0.0082%)

3-7% 1.11 bp 7.05 bp
(-0.139 bp;2.44 bp) (6.76 bp;7.35 bp)

7-10% -3.28 bp 4.91 bp
(-3.72 bp;-2.85 bp) (4.63 bp;5.22 bp)

10-15% 1.42 bp 2.09 bp
(1.11 bp;1.73 bp) (1.88 bp;2.31 bp)

15-30% -0.113 bp 0.742 bp
(-0.255 bp;0.0314 bp) (0.731 bp;0.775 bp)

Relative mean error Relative RMSE

0-3% 0.36% 2.61%
(-0.125%;0.805%) (2.56%;2.68%)

3-7% 1.7% 8.23%
(0.276%;3.19%) (7.83%;8.7%)

7-10% -13.2% 20.1%
(-15.4%;-11%) (19.1%;21.4%)

10-15% 18.6% 27.2%
(15.1%;22%) (24.4%;30.1%)

15-30% -0.0364% 15.1%
(-2.88%;2.85%) (14.8%;15.9%)

Table 4: CDO pricing errors. The first part of this table shows the average pricing
error and the root-mean-squared-error for each CDO tranche in the CDO estimation.
The average pricing error is the average model-implied minus actual price, while
RMSE is the square root of average squared pricing errors. The second part of this
table shows the relative pricing error, defined as the pricing error divided by the
spread, and the relative RMSE, defined as the RMSE for the relative error. For each
simulation in MCMC estimation, mean pricing errors and RMSEs are calculated,
thereby yielding time series of pricing errors and RMSEs. For each time series a 95%
confidence band is defined as the interval between the 2.5% and 97.5% quantile.
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Affine model
Mean hedging error RMSE

0-3% -8.8e-005% 0.00608%
(-0.000102%;-7.16e-005%) (0.00594%;0.00625%)

3-7% -0.0839 bp 3.2 bp
(-0.0887 bp;-0.08 bp) (3.16 bp;3.27 bp)

7-10% -0.0124 bp 1.12 bp
(-0.013 bp;-0.012 bp) (1.11 bp;1.12 bp)

10-15% -0.0168 bp 0.578 bp
(-0.0169 bp;-0.0167 bp) (0.578 bp;0.579 bp)

15-30% -0.00939 bp 0.299 bp
(-0.00942 bp;-0.00936 bp) (0.299 bp;0.299 bp)

Gaussian copula
Mean hedging error RMSE

0-3% -0.000392% 0.00663%
3-7% 0.0308 bp 3.27 bp
7-10% 0.0217 bp 0.981 bp
10-15% -0.000139 bp 0.471 bp
15-30% -0.00177 bp 0.257 bp

Random Walk
Mean hedging error RMSE

0-3% -0.000609% 0.00855%
3-7% -0.202 bp 4.12 bp
7-10% -0.0156 bp 1.18 bp
10-15% -0.0168 bp 0.583 bp
15-30% -0.00948 bp 0.3 bp

Table 5: CDO hedging errors. This table shows the average hedging error and RMSE
for each CDO tranche in the CDO estimation. Denoting P a

t the actual and Pt(St) a
model-implied tranche price at time t with CDS spreads at time t as input, then the
hedging error at time t + 1 is defined as (P a

t+1 − P a
t )− (Pt(St+1)− Pt(St)). For each

hedging error and RMSE a 95% confidence band is given in parenthesis.
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