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I propose a new measure that identifies when the market price of an over-the-counter traded
asset is below its fundamental value due to selling pressure. The measure is the difference
between prices paid by small traders and those paid by large traders. In a model for over-
the-counter trading with search frictions and periods with selling pressures, I show that this
measure identifies liquidity crises (i.e., high number of forced sellers). Using a structural
estimation, the model is able to identify liquidity crises in the U.S. corporate bond market
based on the relative prices paid by small and large traders. New light is shed on two crises,
the downgrade of General Motors and Ford in 2005 and the subprime crisis (JELD4, D83,
G01, G12).

1. Introduction

We know that asset prices can temporarily decrease below their fundamental
value when there is selling pressure—i.e., when many investors seek to sell
the asset at the same time.Duffie (2010) reviews recent evidence in his
2010 Presidential Address to the American Finance Association. Identifying
when this occurs is difficult. This is because the event that causes selling
pressure typically reveals new information about the fundamental value of the
asset. Disentangling selling pressure effects from information effects is at best
challenging.

The main contribution of this article is to propose a measure that identifies
when there is selling pressure in over-the-counter markets. Selling pressure is
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definedas times when the number of sellers relative to the number of buyers is
unusually high. In over-the-counter markets, an asset simultaneously trades at
different prices because prices are negotiated bilaterally. The price difference
between small trades and large trades at a given point in time identifies selling
pressure. If large traders trade at unusually low prices relative to small traders,
there is selling pressure.

In contrast to the existing literature, the measure does not rely on realized
returns. There are two approaches in the current literature. One approach
is to look at asset returns around an event that is unlikely to contain new
information about asset value. If cumulative returns are negative around the
event and rebound fully or partially during a period after, there has been selling
pressure. Examples of this approach includeCoval and Stafford(2007) and
Chen, Noronha, and Singhal(2004). This approach is limited to information-
free events. Another approach is to control for new information and see if
abnormal returns are negative around the event and subsequently rebound.
Mitchell, Pedersen, and Pulvino(2007) andNewman and Rierson(2004)
take this approach. If the event reveals new information about fundamental
asset value, it can be challenging to adjust abnormal returns correctly. For
example,Ellul, Jotikasthira, and Lundblad(2011) andAmbrose, Cai, and
Helwege(2009) both study selling pressure in U.S. corporate bonds around
downgrades. They use similar datasets and reach conflicting conclusions
regarding the importance of selling pressure. Clearly a downgrade contains
information about firm quality, and it is difficult to control for the impact
of this information. In this article, selling pressure is identified through
differences in prices occurring simultaneously. Changes in fundamental value
are automatically controlled for since the information effect is the same for
both small and large trades. Furthermore, selling pressure can be identified in
“real-time.” Previous approaches identify selling pressure ex post through the
subsequent reversal of returns after an event.

In a theoretical model, I find support for the small trade minus large trade
measure as an identifier of selling pressure. My model is a variant of the
search model inDuffie, Gârleanu, and Pedersen(2005). Empirically, I study
the corporate bond market, so the model is adapted to the structure of this
market. There is a corporate bond traded in the model. Investors switch
randomly between needing liquidity or not. Investors trade through a dealer
whom they find at random with different search intensities. A high search
intensity implies that the investor finds a counterparty fast. I interpret such an
investor as a sophisticated/large one. An investor with a low search intensity
is interpreted as an unsophisticated/small investor. Once an investor meets
a dealer, they bargain, and the resulting price reflects their alternatives to
immediate trade. One alternative is to cut off negotiations and search for a new
counterparty. This alternative is particularly strong for large investors who find
counterparties fast. Therefore, large investors negotiate tighter bid-ask spreads.
The alternative of searching for a new counterparty is also strong for buyers in
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a market in which there is selling pressure. This is because there are currently
many sellers. The combined advantages of being a large buyer and a buyer
in a market experiencing selling pressure lead to significant price discounts.
These price discounts are larger than for a small buyer in a market with selling
pressure, because the “threat” of looking for another seller is less forceful for
a small buyer.

In equity markets, it is well known that block trades sell at a discount.
This is documented byKraus and Stoll(1972) and supported by information-
based models such asKyle’s (1985) model. The predictions in my search-based
model are different from predictions in information-based models. In a market
where the numbers of sellers and buyers are balanced, large traders in a search-
based model transact at better prices. The reason is that they negotiate tighter
bid-ask spreads due to their stronger outside options. In information-based
models, large traders sell at lower prices than small traders. This is because
they are likely to have private information about asset value. In addition,
asset price dynamics under selling pressure are different in the two models. In
information-based models, a block trade occurs at a discount and subsequent
small trades also occur at (slightly smaller) discounts. In the search model
here, the pattern is different: At times when there is selling pressure, small
traders trade at high prices and large traders trade at low prices; the time
ordering of trades does not matter. This is because, compared with small
buyers, large buyers can more quickly “shop around” among numerous sellers.
As a consequence, they negotiate larger price discounts.

Another contribution to the literature is that I propose and carry out a
maximum likelihood approach to estimate parameters of the model. I use
transaction data from the TRACE database for the period from October 2004
to June 2009. The TRACE database contains practically all corporate bond
transactions even though trading occurs over the counter. There is a growing
literature on search models, but to my knowledge no one has structurally
estimated a model before. The estimation approach allows me to empirically
identify periods of selling pressure.

A third contribution to the literature is that I shed new light on recent selling-
pressure episodes in the U.S. corporate bond market. There are two major
incidents of selling pressure according to the empirical results. In May 2005,
S&P downgraded General Motors (GM) and Ford to speculative grade, causing
strong selling pressure in their bonds. In the preceding months, selling pressure
intensified as a downgrade became more likely, consistent with findings in
Acharya, Schaefer, and Zhang(2008). My results show that selling pressure
was largely isolated to GM and Ford bonds. The time pattern of selling pressure
in GM bonds was different from that in Ford bonds. Selling pressure in GM
bonds peaked in May because GM was downgraded by both S&P and Fitch
and dropped out of the important Lehman investment-grade index. In contrast,
selling pressure in Ford bonds decreased in May because Ford was downgraded
only by S&P and remained in the Lehman index. The second period with
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Figure 1
Small and large trades in a normal market, under moderate selling pressure, and under strong selling
pressure
This graph shows three examples of all trades smaller than$100,000 (marked with crosses) and trades of at least
$1,000,000 (marked with circles) for a bond during a day.

selling pressure takes off at the beginning of the subprime crisis in summer
2007. During the crisis, there are three peaks in the selling pressure: when Bear
Stearns is taken over, when Lehman Brothers defaults, and at the beginning of
2009 when stock markets lose 30% in two months.

Figure1 illustrates how the relation in prices between small and large trades
identifies selling pressure. The left-hand graph shows that prices for large
trades are on average higher than those for small trades in a normal market.
The middle graph shows a day where large transaction prices are on average
lower than small transaction prices, indicating moderate selling pressure. The
right-hand graph shows how prices of large trades are markedly lower than
prices of small trades when there is a large imbalance in the number of sellers
versus buyers.

Figure2 shows another example of the price pattern when there is selling
pressure. In the figure, all transaction prices in a Citigroup bond on March 11–
12, 2009, are graphed with time stamps. At a given point in time, the bond
trades at multiple prices, reflecting that bond trading is over-the-counter with
bilateral negotiation. Large traders transact at around $70, while small traders
transact at an average close to $75. This indicates strong selling pressure. Note
that a large trade at a low price is not followed by small trades at low prices, so
the price differences between small and large trades are not due to price impact
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Figure 2
Transactions under strong selling pressure
This graph shows all customer buys from a dealer, customer sells to a dealer, and interdealer trades on March
11–12, 2009, for a Citigroup bond with coupon 7.25% and maturity October 1, 2010. Average transaction price
during the two days is 74.8 for trades with a notional below$100K, 73.8 for trades with a notional in the range
$100–$999K, and 70.2 for trades of$1,000K or more.

of large trades. In addition, all transactions are publicly disseminated with at
most a fifteen-minute lag, so the market is transparent.1 The graph also shows
that there is information in medium-sized trades, since they trade at average
prices between those of small and large trades.

2. The Model

The U.S. corporate bond market is a principal source of financing for firms. It
is comparable to the U.S. Treasury market measured in amount outstanding,
but trading volume is more than thirty times lower.2 An investor sequentially
contacts one or several dealers over the telephone to trade a corporate bond.
Dealers typically do not make a market, and a price quote is firm for only a
short period of time. This limits the ability to obtain multiple quotations before

1 At http://cxa.marketwatch.com/finra/BondCenter/Default.aspx, the latest trades in any U.S. corporate bond are
one click away.

2 Principal outstanding volume by the end of 2010 was$7,536 billion in the U.S. corporate bond market and
$8,853 billion in the U.S. Treasury market, while average daily trading volume in 2010 was$16.3 billion in the
U.S. corporate bond market and$528.2 billion in the U.S. Treasury market. Source: Securities and Financial
Markets Association (www.sifma.org).
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committing to a trade.3 Hence,prices are outcomes of a bargaining game,
determined in part by the ease with which investors find counterparties and
the relative number of investors currently looking to buy or sell. The following
model captures these important features of the market.

The economy is populated by two kinds of agents, investors and dealers,
who are risk-neutral and infinitely lived. They consume a nonstorable con-
sumption good used as numéraire, and their time preferences are given by the
discount rater > 0. Time is continuous, starts att = 0, and goes on forever.

Investors have access to a risk-free bank account paying interest rater . The
bank account can be viewed as a liquid security that can be traded instantly. To
rule out Ponzi schemes, the valueWt of an investor’s bank account is bounded
from below. In addition, investors have access to an over-the-counter corporate
bond market for a credit-risky bond. There is a continuum of credit-risky firms
that issue these bonds. If a firm defaults, it is replaced by an identical new
firm. The bond pays coupons at the constant rate of C units of consumption
per year. The bond has expected maturityT and face valueF , meaning that
it matures randomly according to a Poisson process with intensityλT = 1/T
andpaysF at maturity. The bond defaults with intensityλD andpays a fraction
(1− f )F of face value in default. The total amount outstanding of the bond at
time 0 isA where 0< A < 1. When bonds mature or default, firms issue new
bonds to replace them, so the total issue intensity is(λD + λT )A. This implies
that the amount outstanding of bonds at any point in time isA. When bonds
are issued, they are sold through the dealers. I do not model the interaction
between dealers and firms, so the issued bonds appear as extra bonds dealers
sell. A bond trade occurs when an investor finds a dealer in a search process
that will be described in a moment.

Investors hold at most one unit of the bond and cannot short-sell. Because
agents are risk-neutral, investors hold either zero or one unit of the bond in
equilibrium. An investor is of type “high” or “low.” The “high” type has no
holding cost when owning the asset, while the “low” type has a holding cost
of δ > 0 per time unit. The holding cost can be interpreted as a funding
liquidity shock that hits the investor. Each investor receives a preference shock
with Poisson arrival rateλ. Conditional on the shock, the probability that the
investor will become type “high” is 1− π , while it is π to become a “low”
type. The switching processes are for all investors pairwise independent.

I assume that there is a unit mass of independent nonatomic dealers who
maximize profits. An investor with level of sophisticationi, i ∈ {1,2, ..., N}
meets a dealer with intensityρ i , which can be interpreted as the sum of the
intensity of dealers’ search for investors and investors’ search for dealers.
This captures that a sophisticated investor quickly finds a trading partner,
while an unsophisticated investor spends considerable time finding someone
to trade with. The search intensity is observable to everyone. When I refer to a

3 SeeBessembinderand Maxwell(2008) for further details about the U.S. corporate bond market.
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large/sophisticated investor, this means an investor with a high search intensity
ρ j . Likewise, a small/unsophisticated investor refers to an investor with a
small search intensityρ j . Without loss of generality, assume thatρ i < ρ j

when i < j . This assumption implies that investors with intensityρ1 arethe
most unsophisticated and those with intensityρN arethe most sophisticated.
There is a mass of1N investors with search intensityρi , so the total mass of
investors is 1. When an investor and a dealer meet, they bargain over the terms
of trade. Dealers have a fraction,z ∈ [0, 1], of the bargaining power when
facing an investor. I assume that dealers immediately unload their positions in
an interdealer market, so they have no inventory.

In the Appendix, I show that if bond supplyA is low, unsophisticated
investors never own any bonds in steady state. If bond supply is high,
unsophisticated investors—no matter if they are liquidity-shocked or not—
always buy in steady state. To ensure that we in steady state see both buy
and sell prices for investors with search intensityρ i for any i , I assume that

the bond supply is given asA = 1−π
N

(∑N
j =2

ρ j

ρ j +λT +λD
+ (1− ω) ρ1

ρ1+λT +λD

)

for smallω. The assumption is not important for how prices react to a liquidity
shock, which is the mechanism through which selling pressure is identified.
However, it does provide simple pricing formulas.4 The following theorem
states equilibrium bid and ask prices in the economy, and a proof is given in
the Appendix.

Theorem 2.1. Prices in steady state. In steady state, the bidB j andaskAj

pricesfor investors with search intensityρ j aregiven as

Aj
ss = Ψ − δ

λπ

(1 + (1 − z)ρ1 + λ)1

− δ
zλπ(1 − z)(ρ j − ρ1)

(1 + (1 − z)ρ j )(1 + (1 − z)ρ j + λ)(1 + (1 − z)ρ1 + λ)

B j
ss = Aj

ss −
δz

1 + (1 − z)ρ j + λ
,

where

Ψ =
C + λD(1 − f )F + λT F

r + λD + λT

1 = r + λT + λD.

The last part of the expression for the ask price,

δ zλπ(1−z)(ρ j −ρ1)
(1+(1−z)ρ j )(1+(1−z)ρ j +λ)(1+(1−z)ρ1+λ)

, shows how ask prices vary with

4 While the assumption is not important for how prices react to a liquidity shock, it does influence the relation
between prices paid by small and larger traders in steady state. See Appendix A.5 for a discussion.
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searchintensityρ j . Relative to the most unsophisticated investor with search
intensityρ1, more sophisticated investors have lower ask prices. How much
lower depends, among other things, on two important parametersδ and π .
A higher δ implies higher differences because a liquidity shock is “more
expensive.” A higherπ has the same effect because it makes liquidity shocks
more frequent. As an obvious consequence of the theorem, we have the
following corollary:

Corollary 2.1. Bid-ask spreads. The bid-ask spread for investors with
search intensityρ j is given as

Aj
ss − B j

ss =
zδ

λ + ρ j (1 − z) + r + λT + λD
. (1)

We see that sophisticated investors trade at tighter bid-ask spreads than
unsophisticated investors because bid-ask spreads decrease inρ. The prices
buyers and sellers negotiate with dealers reflect their alternatives to immediate
trade. An alternative is to cut off negotiations and find a new dealer. Since
sophisticated investors find a new dealer more easily, their alternative to trade is
stronger and they negotiate better bid and ask prices (see alsoDuffie, Gârleanu,
and Pedersen 2005).

We also see that bid-ask spreads increase in the maturity of the bond 1/λT .
A seller can let a bond mature instead of selling, giving him a strong alternative
to trade in case of a short-maturity bond. A buyer is aware that a short-maturity
bond will mature soon and that he will receive coupons only for a short period.
Thus, neither buyer nor seller is willing to give large price concessions to the
dealer, leading to tight bid-ask spreads.

Next, a liquidity shock to investors is defined. I assume that the model is
in steady state and a sudden liquidity shock occurs. If a shock of size 0≤
s ≤ 1 occurs, a “high” investor (no liquidity need) becomes a “low” investor
(liquidity need) with probabilitys:

Definition 2.1. Liquidity shock. When a liquidity shock of size 0< s ≤ 1
occurs, any high investor becomes a low investor with probabilitys.

Goldstein, Hotchkiss, and Sirri(2007) find that dealers do not split trades
and perform a matching/brokerage function in illiquid bonds. According to
market participants, risk limits often prohibit dealers from taking bonds on
the book and splitting trades when there is a liquidity shock.5 To capture

5 According to conversations with market participants, a corporate bond trade is often carried out as follows,
especially during a crisis. If an investor wants to sell a significant amount of a corporate bond, he contacts a
salesperson from a given bank. The salesperson asks the marketmaker in the bank if he wants to buy it. Often, and
in particular during a crisis, the marketmaker cannot take the bond on the book due to the risk. The salesperson
therefore searches directly for a buyer, and once there is a match, the transaction is carried out. Typically,
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this, I assume that markets are segmented for a while after a shock. This
means that after a liquidity shock, an investor with search intensityρ i trades
only (through the dealer) with investors with the same search intensity. More
specifically, assume that if a liquidity shock larger thanω occurs, markets
become segmented until the shock size has diminished toω. While markets are
segmented, I assume that the proportion of new bond issues that investors
with search intensityρ i buy is the same proportion as in steady state.
Prices following a liquidity shock are given in the following theorem. A proof
is in the Appendix.

Theorem 2.2. Prices after a liquidity shock.Assume that the economy is
in steady state and a liquidity shock of size 0< s ≤ 1 occurs. Then,

B j (s) = B j
ss, s ≤ ω

ρ1

∑N
j =1 ρ j

B j (s) = B j
ss − V(s) + zSj (s), ω ≥ s > ω

ρ1

∑N
j =1 ρ j

B j (s) = e−1t2(s)
(

B j (ω) + (1 − z)[R + Sj (ω) −
δ

λ + ρ j (1 − z) + 1
]
)

+(1 − e−1t2(s))P j
shock, s > ω,

while

Aj (s) = B j (s) +
zδ

λ + ρ j (1 − z) + 1
,

where

V(s) = δ
1 + ρ1(1 − z)

(
1 − e−1t1(s)

)

(ρ1(1 − z) + λ + 1)1

Sj (s) = δ
ρ1(1 − z) + 1 + (ρ j − ρ1)(1 − z)e−(ρ j (1−z)+1)t1(s)

(ρ1(1 − z) + λ + 1)(ρ j (1 − z) + 1)

R= δ
(1 − z)(ρ j − ρ1)πλ

(1 + λ + (1 − z)ρ1)(1 + (1 − z)ρ j )(1 + λ + (1 − z)ρ j

P j
shock=

C + λD(1 − f )F + λT F

1
− δ

ρ j (1 − z) + πλ + 1

1(ρ j (1 − z) + λ + 1)

t1(s) = log(
s

ω

∑N
j =1 ρ j

ρ1
)/λ

the bid-ask fee is collected by the salesperson, not the marketmaker. Consistent with this,Bessembinder and
Maxwell (2008) note, ”In interviews, numerous corporate bond market participants. . . told that, post-TRACE,
bond dealers no longer hold large inventories of bonds for some of the most active issues; for less-active bonds,
they now serve only as brokers.”
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t2(s) = log(
s

ω
)/λ

1 = r + λT + λD.

Pricesdecrease because low-type sellers arriving at dealers outnumber high-
type buyers arriving at dealers for a while. During this period, some low-type
investors are buying such that bond demand equals bond supply. To make
markets clear, they buy at their reservation price, the price at which they
are indifferent between buying or not. The termB j

shock is the reservation price
of a low-type investor with search intensityρ j in a situation in which there
are more sellers than buyers permanently. The weight onB j

shock dependson
the time low-type sellers outnumber high-type buyers. The larger the shock
s is, the longer the period is, and the lower the prices following the shock
are. The period is determined through the fractions

ω . For this reason, I refer
to s

ω asselling pressure in the empirical analysis rather than the shock sizes
itself.

Without the assumption of segmented markets, both high- and low-type
unsophisticated investors buy bonds following a liquidity shock, as Appendix
A shows. Furthermore, high-type sophisticated investors buy bonds, while low-
type sophisticated investors sell bonds. That is, there would be no sell trades
by investors with low search intensities. As the next theorem shows, bid and
ask prices facing sophisticated investors decrease more than bid and ask prices
facing unsophisticated investors.

Theorem 2.3. Relation between prices after a liquidity shock. Assume
that the economy is in steady state and a liquidity shock of sizeω < s ≤ 1 oc-
curs. Assume thatρ i (1−z) + r + λT + λD > 1+ e−(r +λD+λT +ρ1(1−z))t1(ω)−1.
For ρi < ρ j , prices immediately after the shock satisfy thatMi (s) − M j (s) is
increasingin s, whereM can be either the bid or ask price.

The theorem shows that the difference between the price paid by unsophisti-
cated investors and the price paid by sophisticated investors is a monotonically
increasing function of the shock size. The price can be either the bid or
ask. The reason is that prices are outcomes of bargaining, and they reflect
investors’ alternatives to immediate trade. Buying investors have the alternative
to search for a new counterparty, and this alternative is strong for sophisticated
investors since they find new counterparties quickly. Therefore, they can
negotiate higher price discounts. One might think that sophisticated sellers
have an equally strong outside option. However, because sellers temporarily
outnumber buyers, they sell at their reservation value and their outside options
are irrelevant while the shock lasts. The conditionρ i (1− z) + r + λT + λD >

1 + e−(r +λD+λT +ρ1(1−z))t1(ω)−1 is a sufficient condition for the theorem to
hold, not a necessary condition.
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3. Data

Corporate bond transaction data only recently became available on a large
scale through TRACE. TRACE covers all trades in the secondary over-the-
counter market for corporate bonds and accounts for more than 99% of the
total secondary trading volume in corporate bonds. The public dissemination
starts in July 1, 2002, with dissemination of a small subset of trades, and from
October 1, 2004, almost all trades are disseminated.

I use a sample of noncallable, nonconvertible, straight coupon bullet bonds
with maturity less than thirty years. I collect information for each bond
from Bloomberg.6 Their trading history is collected from TRACE covering
the period from October 1, 2004, to June 30, 2009, and after filtering out
erroneous trades, 10,050,090 trades are left. Error trades are filtered out using
the approach inDick-Nielsen(2009). Summary statistics are given in Panel
B in Table1. An average bond has a maturity of around five years and trades
around 140 times each quarter, and each trade has a size of around $225,000.
Trade sizes are downward-biased because trade sizes in TRACE are capped at
$5,000,000 for investment-grade bonds and $1,000,000 for speculative-grade
bonds. Also, while the average bond trades around 140 times each quarter, the
median bond trades only 18 times each quarter, so a small number of bonds
trade often while the majority of bonds trade infrequently.

To estimate the search model outlined in the previous section, an estimate
of round-trip costs in the dealer market is needed. The round-trip cost is the
difference between the price at which a dealer sells a bond to a customer and
the price at which a dealer buys a bond from a customer. Two main approaches
to estimate round-trip costs exist in the literature. The first is on a given day to
subtract average buy prices from average sell prices (Hong and Warga 2000;
Chakravarty and Sarkar 2003). The second is a regression-based methodology
in which each transaction price is regressed on a benchmark price and a
buy/sell indicator (Schultz 2001; Bessembinder, Maxwell, and Venkataraman
2006; Goldstein, Hotchkiss, and Sirri 2007; Edwards, Harris, and Piwowar
2007). However, both approaches require a buy/sell indicator for each trade,
which is not publicly available for the period up to October 2008. I estimate
bid-ask spreads by a different procedure, which I describe below.

The methodology for estimating round-trip costs in this article is based on
what I denoteimputed roundtrip trades(IRT). IRTs are based on a situation
that occurs with some regularity: A bond that does not trade for hours or
days suddenly has two or three trades with the same volume within, say, five
minutes. Such trades are likely part of a pre-matched arrangement in which a
dealer has matched a buyer and seller. Once there is a match, a trade between
the seller and the dealer and a trade between the buyer and the dealer are carried

6 Moreprecisely, I require for each bond a “no” in the fields “callable” and “convertible” and a “yes” in the fields
“fixed” and “bullet.” Approximately 5% of all bonds are convertible, 50% callable,80% fixed, and 50% bullet.
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out. If a second dealer is involved in the pre-matching, there is also a trade
between the two dealers. Therefore, for a given bond on a given day, if there
are exactly two or three trades for a given volume and they occur within fifteen
minutes, I define these trades to be part of an IRT. In an IRT, the highest price
is assumed to be an investor buying from a dealer, the lowest price assumed
to be an investor selling to a dealer, and the investor round-trip cost to be the
highest minus the lowest price. I delete IRTs with a zero round-trip cost from
the sample.7 Beginning in November 2008, buy/sell indicators are available,
which allows me to check the accuracy of IRTs for this subsample (shown
in Appendix C). Appendix C shows that although IRTs tend to underestimate
round-trip costs, the empirical results are robust to this bias.

Of the 10,050,090 trades in the full sample, 2,159,447 are part of IRTs,
resulting in a total of 973,600 IRTs. Panel A in Table1 shows summary
statistics for the subsample of data consisting of IRTs. We see that average
trade sizes are slightly lower compared with the full sample, average maturity
is roughly the same, and the number of quarterly trades decreases from an
average of around 140 to around 30. Approximately 20% of the bonds drop
out of the sample. Panels F and G address whether IRTs occur mostly in the
liquid or illiquid segment of the corporate bond market. Panel F shows that
most of the IRT trades are in bonds that have few trades each day. However,
Panel G shows that the total fraction of trade volume that is captured by IRTs
is almost the same across bonds that trade frequently and infrequently. Thus,
IRTs capture transaction costs for both liquid and illiquid bonds.

Summary statistics of trading costs using IRTs are given in Table1, Panels
C–E. Panel D shows that the average transaction cost is 59 cents and is
decreasing as a function of trade size. This is consistent with findings in
Schultz (2001), Chakravarty and Sarkar(2003), andEdwards, Harris, and
Piwowar (2007). Transaction costs are increasing in maturity, as Panel E
shows. Costs are around four times as large for long maturities compared
with short maturities. Finally, Panel C shows that average transaction costs
decrease from 2004 to 2006 and increase during the subprime crisis 2007–
2009. There are significant differences in the time-series pattern for large and
small trades. Transaction costs for small trades are relatively stable during the
sample period. Costs for large trades increase with a factor of 4 from the first
quarter in 2007 to the fourth quarter in 2008.

The main point in this article is that price differences between small and
large trades identify periods of selling pressure, and this is so for both buy
and sell prices. The onset of the subprime crisis caused liquidity in the U.S.
corporate bond market to dry up (Bao, Pan, and Wang 2011; Dick-Nielsen,
Feldḧutter, and Lando forthcoming), and Table2 shows summary statistics for

7 IRTs are closely related toGreen, Hollifield, and Scḧurhoff’s (2007) “immediate matches.” An “immediate
match” is a pair of trades where a buy from a customer is followed by a sale to a customer in the same bond
for the same par amount on the same day with no intervening trades in that bond. However, since there is no
information about the sides in the transactions in the TRACE database, “immediate trades” cannot be calculated.
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Table 2
Differences in prices for small and large trades

Panel A: Small buy – large buy(early)

0–2y 2–5y 5–7y 7–30y Average

0–100K 0 0 0 0 0
100K–250K −1 7 13 11 8
250K–500K 3 15 26 26 17
500–1,000K 2 22 36 35 24
>1,000K 8 33 35 52 32

Average 3 19 28 31

Panel B: Small sell – large sell(early)

0–2y 2–5y 5–7y 7–30y Average

0–100K 0 0 0 0 0
100K–250K −15 −16 −18 −31 −20
250K–500K −17 −22 −23 −39 −25
500–1,000K −23 −22 −20 −42 −27
>1,000K −21 −12 −21 −21 −19

Average −19 −18 −20 −33

Panel C: Buy-diff(early) – buy-diff(late)

0–2y 2–5y 5–7y 7–30y Average

0–100K 0 0 0 0 0
100K–250K −7 −13 −7 −16 −11
250K–500K −19 −23 −28 −32 −25
500–1,000K −33 −30 −33 −46 −36
>1,000K −29 −31 −46 −58 −41

Average −22 −24 −29 −40

Panel D: Sell-diff(early) – sell-diff(late)

0–2y 2–5y 5–7y 7–30y Average

0–100K 0 0 0 0 0
100K–250K −17 −23 −22 −34 −24
250K–500K −30 −36 −41 −51 −40
500–1,000K −44 −40 −47 −64 −49
>1,000K −40 −37 −47 −65 −47

Average −33 −34 −39 −54

Thesample period is split into an early period, 2004Q4–2007Q2, and a late period, 2007Q3–2009Q2. Panel A
shows for the early period the average price difference in cents for an investor buy with a small volume minus
an investor buy with a large volume in the same bond on the same day. Panel B shows the same price difference
for investor sells. For example, the average price difference for a 7–30-year bond between investor sells with a
volume of more than$1,000,000and investor sells with a volume less than$100,000is 21 cents. Panel C shows
the difference in buy differences between the early period and late period. Panel D shows the differences in
sell difference between the early and the late period. For example, the average price difference for a 7–30-year
bond between investor sells with a volume of more than$1,000,000and investor sells with a volume less than
$100,000is 21 cents in the early period and−44 cents in the late period, leading to a difference of 65 cents, as
the table shows.

price differences across trade sizes before the onset of the crisis, 2004Q4–
2007Q2, and after, 2007Q3–2009Q2. In the table, a difference in trade prices
is recorded if two trades occur within the same day in the same bond. Panel
A shows that during the period 2004Q4–2007Q2, large buyers paid less than
small buyers and the difference was increasing in the maturity of the bond
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and trade size. For example, the selling price for a long-maturity bond was
on average 52 cents higher for a trade of at least $1,000,000 compared with a
trade of $100,000 or less. Similarly, Panel B shows that large investors sold at
higher prices than small investors, and we see that the difference increased in
bond maturity and trade size, although the pattern is less pronounced than for
investor buy transactions.

The results in Panels A and B of Table2 are not surprising given that transac-
tion costs increase in bond maturity and decrease in trade size. More strikingly,
Panels C and D show how price differences across trade sizes changed after the
onset of the subprime crisis. While the average selling price of a long-maturity
bond was 21 cents higher in a large trade compared with a small trade before
the subprime crisis, Panel D shows that this decreased by 65 cents after the
onset of the crisis, such that the average selling price in large trades was now 44
cents lower than in a small trade. We see from Panels C and D that the impact
of the subprime crisis on price differences is increasing in bond maturity and
trade size. In addition, the impact is similar in buys and sells.8

Overall, Panels C and D show that price differences change systematically
during the subprime crisis and the size of the change depends on both bond
maturity and trade size.

4. Estimation Methodology

Liquidity risk and credit risk are hard to empirically disentangle, since
prices decrease in response to an increase in either of them. Assuming that
large traders are more sophisticated than small traders, the model in this
article predicts that prices of large traders react stronger to selling pressure than
those of small traders. Therefore, a liquidity shock can be identified through
the relation of small trades versus large trades.

A simple approach to identify liquidity shocks would be to calculate price
differences between small and large trades, where the cutoff between small
and large is some chosen dollar value. This approach is problematic for several
reasons. First, information in trades of different sizes is ignored. For example,
if the cutoff is $500,000, then any price differences between trades in the size
range $250,000–500,000 and $0–100,000 are not used in inferring liquidity
shocks. As Panels C and D in Table2 show, there is a significant amount of
information in those price differences. Second, maturity effects are ignored.
When following the same bond over time, the maturity of the bond shortens,
and this has an effect on the impact of liquidity shocks on price differences,
as Panels C and D show. Third, many bonds trade infrequently, so when
constructing the measure, there are many missing observations over time.

8 Althoughnot shown, the pattern for median price differences is very similar and in some cases more pronounced
compared with the pattern for mean price differences, so the results are not due to a small number of extreme
observations.
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To overcome the limitations of the simple approach, I structurally estimate
the search model in Section2. In the structural approach, information is
extracted from the whole cross-section of trade sizes. The longer maturity a
bond has, the stronger is the price reaction to selling pressure. In the structural
approach, this is taken into account when extracting information from bond
trades. And missing observations are easy to handle.

In the estimation, I fit the model to demeaned prices. By demeaning, effects
due to credit risk or other fundamental effects are “filtered out,” while cross-
sectional differences in trade prices identify liquidity effects. Any bid or ask
prices for a given bond on a given day are demeaned with the average of all
bid and ask prices for this bond on this day. All prices refer to trades that are
part of IRTs. That is, if there areNtb IRTs on bondb on dayt , and Atbi is
the i th ask price andBtbi thecorresponding bid price, the demeaned ask price
is defined asAtbi − ABtb and demeaned bid price asBtbi − ABtb, where
ABtb = 1

2Ntb

∑Ntb
i =1(Atbi + Btbi ).

Let Θ be a vector with the parameters of the model, ands be a shock
size between 0 and 1 defined in Definition2.1. For dayt and bondb, all
demeaned bid and ask prices are denotedP1

tb, P2
tb, ..., P2Ntb−1

tb , P2Ntb
tb (the

sortingdoes not matter). With a shock size ofs on dayt , the demeaned fitted
pricesP̂1

tb(Θ, st ), P̂2
tb(Θ, st ), . . ., P̂2Ntb−1

tb (Θ, st ), P̂2Ntb
tb (Θ, st ) arecalculated

using Theorem2.2. I assume that fitting errors are independent and normally
distributed with zero mean and a standard deviation that depends on the
maturity of the bond

Pi
tb − P̂i

tb(Θ, st ) ∼ N(0,wtbσ
2),

wtb = max(1,Ttb),

whereTtb is the maturity of bondb on dayt . The choice ofwtb is motivated by
the fact that pricing errors tend to increase with maturity, while at the same time
excessive influence of prices for bonds with maturity close to zero is avoided.
With this error specification, we have that

ε i
tb(Θ, st ) =

Pi
tb − P̂i

tb(Θ, st )
√

wtb
∼ N(0,σ 2).

Thelikelihood function is given as

− 2 logL(Θ|Y) =
1

σ 2

T∑

t=1

Nb∑

b=1

2Ntb∑

i =1

ε i
tb(Θ, st (Θ))2

+
T∑

t=1

Nb∑

b=1

2Ntb∑

i =1

[log(σ 2) + 2π], (2)

whereNb is the number of bonds in the sample andst (Θ) is defined as
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st (Θ) = arg min
ξ

∑

all daysu that
belongto same
month as dayt

Nb∑

b=1

2Nub∑

i =1

ε i
ub(Θ, ξ)2. (3)

Thatis, I assume that all days in a month experience the same liquidity shock,
and for a given parameter vectorΘ this shock is found to be minimizing the
sum of squared pricing errors for that month’s prices. The approach is similar
to that ofJarrow, Li, and Zhao(2007), and a more detailed discussion about
the estimation procedure can be found there. The estimation jointly estimates
the parameter vectorΘ and a time series of monthly liquidity shocks.

I use trade size as a proxy for investor sophistication. Specifically, there are
six investor classes that differ in their search intensityρ, and they trade in par
values of $0–10,000, $10,000–50,000, $50,000–100,000, $100,000–500,000,
$500,000–1,000,000, and more than $1,000,000.9 Goldstein,Hotchkiss, and
Sirri (2007) andBessembinder, Kahle, Maxwell, and Xu(2009) find that trades
smaller than $100,000 are mainly retail trades and trades bigger than $100,000
are predominantly institutional trades. So, one interpretation of a small trader is
that of an unsophisticated retail investor, while a large trader is a sophisticated
institutional investor.Lagos and Rocheteau(2009) andGârleanu(2009) ease
the restriction that asset holdings are zero or one. They find that there is a
positive relationship between trade size and sophistication, as measured by
search intensity. The restriction on asset holdings does not allow for such a
positive relationship here, but I control for this empirically by using trade
size as a proxy for investor sophistication. For future research, it would be
interesting to exploit trade size information in the estimation even more by
allowing for arbitrary asset holdings.

There are a number of parameters in the model for which historical estimates
are available. The riskless rate is set tor = 0.05, which is close to the average
ten-year swap rate of 4.94% in the estimation period. The bond coupon is set to
seven, close to the average coupon rate in the sample period, and face value to
F = 100. The default intensity is set toλD = 0.012,and the recovery rate on
the bond in case of default is set to 42% such thatf = 0.58. The last two are
averages for the period 1994–2008 (see Exhibit 26 and 45 inMoody’s 2009). I
could let the riskless rate be time-varying in the estimation, allow for different
default intensities across rating, and let the bond coupon reflect each bond’s
actual coupon. Since the effect on the estimation results of doing so is small
because I fit to demeaned prices and not to price levels, I choose the more
parsimonious approach. Finally, I setω = 0.0001. The parameters to estimate
areΘ = (δ, λ, π, z, ρ1, ρ2, ρ3, ρ4, ρ5, ρ6).

9 Table1 shows that average trade size decreases from$180,000to 200,000 to approximately$150,000during
the subprime crisis (see Dick-Nielsen, Feldhütter, and Lando forthcoming for a further discussion). This might
influence the results, but the effect is likely to be small because the differences in the trade size of investor classes
are large.
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5. Empirical Results

5.1 Parameter estimates and model fit
Table3 shows the parameter estimates. We see that search intensities increase
as trade size increases, so more sophisticated investors trade in larger sizes.
The most unsophisticated investors (trading in sizes between 0 and $5,000)
have a search intensity of 40. This implies that they need around a week on
average before they find a dealer with whom to trade with. This can be viewed
as the time it takes a nonprofessional to learn how to trade in the corporate
bond market, keep up to date about information relevant for trading, and find
an alternative dealer in case his preferred one gives him uncompetitive prices.
The most sophisticated investors (trading sizes of more than $1,000,000)
have a search intensity of 372, implying that it takes half a day to complete
trades of large size. The productλπ = 0.33 implies that, without aggregate
liquidity shocks, it is a rare event for a corporate bond investor to be hit by
a liquidity shock; it occurs on average once every three years. A liquidity-
shocked investor remains shocked for about three months sinceλ = 3.58. The
estimated bargaining power of dealers ofz = 0.97 shows that dealers are in a
strong bargaining position relative to investors.

Panel A of Table4 shows fitted round-trip costs. The model underestimates
round-trip costs for the smallest trades, while round-trip costs for large trades
are matched well. In particular, the strong negative relation between trade size
and trading costs is captured. In Panel B, we see that the model replicates
the positive relation between round-trip costs and bond maturity although costs
are underestimated for long-maturity bonds.Chakravarty and Sarkar(2003)
point to increased interest rate risk as a possible explanation for the positive
relation between trading costs and maturity. This analysis shows that to a
large extent the relation can be explained by better outside options of investors
trading short maturity bonds.

Panels C and D of Table4 show the change in price differences between
small and large trades after the onset of the subprime crisis. Remember that
these differences identify selling pressure in the model. Compared with actual
changes in Panels C and D of Table2, we see that the model largely captures
the size of the change for both buy and sell transactions. Also, the model
captures the relation between price difference changes and bond maturity and

Table 3
Parameterestimates

δ λ π z ρ1 ρ2 ρ3 ρ4 ρ5 ρ6

2.911
(0.003)

3.580
(0.090)

0.092
(0.013)

0.970
(0.001)

40
(1.1)

38
(1.0)

50
(0.9)

101
(1.7)

278
(23.7)

372
(8.5)

This table shows estimated parameters of the search model. Model parameters are estimated by maximum
likelihood, and standard errors are calculated using the outer product of gradients estimator. Corporate bond
data used in estimation are transactions from TRACE for the period October 1, 2004, to June 30, 2009.
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Table 4
Estimated round-trip costs and price differences

Panel A: Trade size [Panel D in Table1]

0–10K 11–50K 51–100K 101–500K 501–1000K >1000K

54 54 47 38 21 19

Panel B: Maturity [Panel E in Table1]

0–2m 2m–4m 4–6m 6m–1y 1–5y 5–30y
18 30 37 43 50 52

Panel C: Buy-diff(early) - buy-diff(late) [Panel C in Table2]

0–2y 2–5y 5–7y 7–30y Average

0–100K 0 0 0 0 0
100K–250K −15 −22 −22 −24 −21
250K–500K −21 −28 −27 −29 −27
500–1,000K −32 −43 −42 −46 −41
>1,000K −33 −43 −44 −46 −42

Average −26 −34 −34 −36

Panel D: Sell-diff(early) - sell-diff(late) [Panel D in Table2]

0–2y 2–5y 5–7y 7–30y Average

0–100K 0 0 0 0 0
100K–250K −15 −22 −22 −24 −21
250K–500K −20 −29 −28 −31 −27
500–1,000K −32 −44 −43 −46 −41
>1,000K −33 −43 −44 −46 −42

Average −25 −34 −34 −37

This table reports model-fitted round-trip costs and price differences. Panel A compares with Panel D in Table
1, Panel B compares with Panel E in Table1, Panel C compares with Panel C in Table2, and Panel D compares
with Panel D in Table2.

tradesize. Thus, the model captures how price differences change along bond
maturity and trade size, and it does so for both buy and sell prices.

The following calculations provide an estimate of the additional cost due to
search that investors in the corporate bond market incur compared with that of
the Treasury market. The average maturity in the data sample is 5.5 years, so
a five-year bond is the most representative bond for the corporate market. An
estimate of the average bid-ask spread as a percentage of par value of a five-
year bond in the Treasury market is 0.012% according toFleming(2003). For
an average investor, i.e. an investor with an average search intensity, the corre-
sponding estimate for a five-year bond in the corporate bond market is 0.343%
according to the parameter estimates and Equation (1). Thus, an estimate of the
cost of search on a trade in the corporate bond market relative to the Treasury
market is half the round-trip cost, 0.166%. The yearly trading volume in the
corporate bond market was $4,284 billion in 2009.10 So, an estimate of the

10 Average daily volume in the U.S. corporate bond market was$16.8 billion according to the Securities and
Financial Markets Association (www.sifma.org), so yearly was 255*$16.8billion.
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additionalyearly costs investors bear in the corporate bond market compared
with the Treasury market is $4,284 billion∗0.166%= $7.1 billion.

5.2 Selling pressure
In response to a liquidity shock, prices decrease and slowly return to their
equilibrium level as time passes. In previous literature, selling pressure is iden-
tified through this pattern. However, it is difficult to disentangle price effects
due to a liquidity shock from price effects due to changes in fundamentals.
For example, a downgrade might lead to selling pressure, but there is also an
informational effect of the downgrade.

In this article, selling pressure is identified by the cross-sectional variation in
prices. For example, assume that the difference in bid prices in a bond between
large trades and small trades in steady state is 20 cents. If this decreases to
10 cents one month, there is a liquidity shock that month. If it decreases to,
say,−10 cents, there is an even larger liquidity shock. The same pattern in
ask prices identifies liquidity shocks, and the estimation procedure uses the
information in both bid and ask prices. Note that the shock size is identified
only through multiple observations of bid and ask prices in a bond on a
given day for investors with different search intensities. If investors were not
sorted according to sophistication and there instead was a single representative
investor, shocks could not be identified.

Figure3 graphs the estimated selling pressure. A 95% confidence interval
is bootstrapped according toBradley(1981).11 In the first part of the sample
period, there is one modest shock occurring. GM and Ford were downgraded
to junk bond status in May 2005, causing a test for the corporate bond market
because of the amount of GM/Ford debt outstanding. To examine the effect of
the downgrade on the corporate bond market more closely, Figure4 shows the
selling pressure for Ford bonds, GM bonds, and the rest of the corporate bond
market around this period.

In late 2004, S&P downgraded GM to BBB–, the last rating notch before a
junk rating, and the graph shows some selling pressure in this period consistent
with evidence inAcharya, Schaefer, and Zhang(2008). Many bond investors
and asset managers are restricted to invest in only investment-grade bonds,
so they started to sell off GM bonds, anticipating the future downgrade to
junk. BIS (2005) write, “The downgrade had long been anticipated and so
asset managers had ample opportunity to adjust their portfolios. Since mid-
2003, the automakers’ spreads had been trading closer to speculative-grade
issuers than those on other BBB-rated issuers.” As it became increasingly
likely that especially GM would be downgraded, selling pressure increased in
the beginning of 2005. Interestingly, selling pressure temporarily decreased
in February 2005. On January 24, 2005, Lehman announced that it would

11 For each month, the bootstrapped standard errors are based on 500 simulated datasets.

1175

 by guest on M
arch 20, 2012

http://rfs.oxfordjournals.org/
D

ow
nloaded from

 

http://rfs.oxfordjournals.org/


The Review of Financial Studies / v 25 n 4 2012

Figure 3
Selling pressure in the corporate bond market
This graph shows the estimated time variation of selling pressure in the corporate bond market. Higher values
mean that more investors wish to sell. Selling pressure is defined ass

ω , as explained in Section2. A 95%
confidence interval for selling pressure is bootstrapped and shown as dashed lines.

change methodology for computing its index rating for bonds where the
rating agencies disagree on whether it is investment grade or junk (seeChen,
Lookman, Scḧurhoff, and Seppi 2009). Before the announcement, it was
the lower of S&P and Moody’s rating. Beginning July 1, 2005, it would
be the middle rating of S&P, Moody’s, and Fitch. For many investment-grade
investors, the Lehman investment-grade index is an important benchmark. This
move made it less likely that Ford/GM bonds would drop out of the index
since a downgrade from one of the two major rating agencies was now not
sufficient to cause such a drop. This change likely caused a temporary ease
in selling pressure. However, a steep profit warning from GM on March 16
reintensified selling pressure, and in May selling pressure peaked when GM
was downgraded to junk by both Fitch and S&P. We see a different selling
pressure pattern for Ford bonds, which had a peak in April and a decrease in
May. In contrast to GM bonds, Ford bonds were downgraded by only S&P and
were still classified as investment grade under the new Lehman index rule. We
see from the figure that there was at best moderate selling pressure in other
bonds, so the sell-off was concentrated in GM and Ford bonds.

A period with a large number of forced sellers according to Figure3 began
in fall 2007 when interbank markets froze and the “credit crunch” began.
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Figure 4
Selling pressure in GM and Ford bonds around their downgrade to junk
This graph shows the time variation in selling pressure in GM bonds, Ford bonds, and the rest of the corporate
bond market around the downgrade of GM and Ford to junk in 2005. They-axis shows selling pressure, and
higher values correspond to more sellers.

However, the first signs of selling pressure appeared already in April 2007
when the subprime mortgage crisis spilled over into the corporate bond market
(Brunnermeier 2009). Figure3 shows a large shock in March 2008.BIS (2008)
write, “Turmoil in credit markets deepened in early March...tightening repo
haircuts caused a number of hedge funds and other leveraged investors to
unwind existing positions. As a result, concerns about a cascade of margin
calls and forced asset sales accelerated the ongoing investor withdrawal from
various financial markets. In the process, spreads on even the most highly rated
assets reached unusually wide levels, with market liquidity disappearing across
most fixed income markets.” A liquidity squeeze on Bear Stearns caused a
takeover by JPMorgan on March 17. The Federal Reserve cut the policy rate
by 75 basis points, and “(t)hese developments appeared to herald a turning
point in the market...with investors increasingly adopting the view that various
central bank initiatives aimed at reliquifying previously dysfunctional markets
were gradually gaining traction” (BIS 2008). The selling pressure in May 2008
is very low compared with a few months earlier. According toBIS (2008), “By
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the end of the period in late May, the process of disorderly deleveraging had
come to a halt, giving way to more orderly credit market conditions. Market
liquidity had improved and risk appetite increased, luring investors back into
the market.” However, this rebound of the corporate bond market was short-
lived, and the model-implied liquidity shocks peaked again in September and
October 2008. Lehman Brothers filed for bankruptcy on September 2008, one
of the biggest credit events in history, triggering a new and intensified stage
of the credit crisis. At the end of 2008, there was a brief halt in selling
pressure, but in the first three months of 2009, selling pressure intensified
again. In this period, stock markets lost more than 30% in value. This loss
likely worsened funding conditions, leading to a loss in liquidity across asset
classes as predicted byBrunnermeier and Pedersen(2009). Finally, the second
quarter of 2009 saw a decrease in the selling pressure consistent with credit
spreads tightening in the period.

5.3 The credit spread puzzle
One of the most widely employed frameworks of credit risk, structural models,
was developed in the seminal work ofMerton (1974). Structural models take
as given the dynamics of the value of a firm and value corporate bonds as
contingent claims on the firm value. In structural models, the spread between
the yield on a corporate bond and the riskless rate goes to zero as maturity
shortens. However, yield spreads are typically positive, also at very short
maturities. This has given rise to the “credit spread puzzle,” namely that
corporate yield spreads are too high to be explained by the corporate bond
issuer’s default risk (see, for example,Huang and Huang 2003; Chen, Collin-
Dufresne, and Goldstein 2009). The puzzle is particularly severe at very short
maturities. Consistent with this evidence, among others,Longstaff (2004),
Longstaff, Mithal, and Neis(2005), andFeldḧutter and Lando(2008) find a
large non-default component. In this section, I examine to what extent search
frictions and selling pressures can explain this non-default component.12

I define the search premium for an investor as the midyield paid by this
investor in steady state minus the yield in steady state of an investor who
can instantly find a trading partner (ρ = ∞).13 This mimics a trade in
the corporate bond market versus a trade in the liquid Treasury market. I
do this for an “average” corporate bond investor, where the search intensity

12 The model in this article is related to reduced-form models of credit risk, where there is an intensity process
governing the risk of default. Thus, it does not predict a near-zero contribution of default risk to spreads at
very short maturities as structural models. Nevertheless, the implications of search costs can be examined in the
model.

13 It is easy to show that the discounted present value of the promised payments of a bond using discount ratey is

E(
∫ τT
0 Ce−yt dt + e−yτT F) =

C+λT F
y+λT

whereτT is the (stochastic) maturity. Therefore the yieldy on a bond

with price P is y =
C+λT F

P − λT , which is the formula used to convert prices to yields.
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is the average of all the estimated search intensities in Table3.14 For the
same “average” investor, I define the selling pressure premium as the average
estimated midyield across all months minus the average midyield across all
months where all liquidity shocks are set to zero.

Figure 5 graphs the term structure of search premia and selling pressure
premia. The figure shows that search costs affect primarily the short end of the
yield curve. The premium is more than 100 basis points for bonds with very
short maturities (less than three weeks). For bonds with maturities of more than
two years, the effect of search costs is in the single-digit range. There are two
reasons for the downward-sloping costs of search. First, if a liquidity-shocked
investor owns a short-maturity bond, he is likely to be liquidity-shocked during
the life of the bond. This means that he values the bond almost as a bond paying
C − δ in coupons. So, the yield cost of holding the bond isδ. If a liquidity-
shocked investor owns a long-maturity bond, he values it higher than a bond
paying couponsC − δ because he will likely switch type during the life of
the bond. Therefore, the average yield cost of holding the bond is less than
δ. Second, if an investor owns a short-maturity bond, he has fewer trading
opportunities during the life of the bond. So, for a short-maturity bond, the
alternative to trade is essentially to let the bond mature. For a long-maturity
bond, the additional alternative is to look for another counterparty.

Turning to the impact of selling pressure, Figure5 shows that the average
effect decreases as a function of maturity. The yield spread due to selling
pressure at a given maturity can be viewed as the average of future expected
excess returns. The initial returns at the beginning of a liquidity shock are high,
so for short maturity bonds all future expected excess returns are high. For long
maturity bonds, the average is over initial high returns and subsequent lower
returns when the economy has fully recovered. Therefore, the effect is stronger
for short maturity bonds.15

For a five-year bond, the selling pressure effect is 40 basis points.Huang and
Huang(2003) andLongstaff, Mithal, and Neis(2005) find the average non-
default component of the five-year AAA-Treasury spread to be 50–55 basis
points. The combined effect of selling pressure and search costs is 45 basis
points in my data sample. Such comparisons should be interpreted with care
due to differences in sample periods, but the comparison does suggest that the
estimated premium is close to but underestimates that reported in the literature.
One reason might be that investors in the model do not recognize the possibility
of a future liquidity shock. To examine this, I solve the model in the case
where investors anticipate future liquidity shocks. This is done in Appendix B.

14 Specifically, when I calculate the yields for an “average” investor, I setρ4 to 147 instead of 101 and look at
yields for investor 4. When I calculate yields for an investor withρ = ∞, I setρ6 = ∞ insteadof 372 and look
at yields for investor 6.

15 Thepremium due to selling pressure is hump-shaped at very short maturities. This is because the rate of price
increases for a while is higher when markets become integrated compared with immediately after the shock.

1179

 by guest on M
arch 20, 2012

http://rfs.oxfordjournals.org/
D

ow
nloaded from

 

http://rfs.oxfordjournals.org/


The Review of Financial Studies / v 25 n 4 2012

Figure 5
Premium in yields due to search costs and occasional selling pressures
This graph shows the premium in yields across bond maturity due to search costs and occasional selling
pressures. The search premium is the average yield at which a corporate bond investor transacts in steady state
minus the steady-state yield an investor who can trade instantly trades at. The selling pressure premium is the
estimated yield—averaged over the sample period—paid by a corporate bond investor minus the average yield
that would have prevailed in absence of any selling pressure shocks.

To keep the model tractable, I assume that when an aggregate liquidity shock
occurs all investors become low investors. This is a severe shock. An aggregate
shock happens with intensityλl . Figure6 shows the impact on steady-state
yields when investors anticipate aggregate shocks.16 The figure shows that
the impact on steady-state yields is increasing in maturity. Steady-state prices
are the long-run prices in absence of liquidity shocks happening. Again,
we can think of the yield spread as an average of future expected excess
returns. If the economy is hit by an aggregate shock, returns are negative.
Prices rebound subsequently, but if an investor needs to sell the bond before
prices have recovered, he has a loss. To be compensated for this, steady-state
prices are lower (and yields higher). The amount of compensation depends on
the probability of the market being under selling pressure when selling. For
interpretation, assume that we have discrete time periods1t . Since we look at
steady-state prices, it is implicitly assumed that it is a long time since a shock
has happened. For a one-period bond, the probability of the price being low in
period one is the probability of an aggregate shock happening,1tλl . Assume

16 The impact of aggregate shocks on the selling pressure premium and search cost premium is small for the values
of λl shown in Figure6.
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Figure 6
Yield spread due to future expected selling pressure
Assume that investors anticipate that future liquidity shocks leading to selling pressure might occur. This graph
shows how yields in steady state are affected relative to the case in which investors do not anticipate future
liquidity shocks.λl is the intensity of aggregate liquidity shocks.

now that a liquidity shock lasts for several periods. For a two-period bond,
the probability of the price being low in period one is1tλl . The probability
in period two is 21tλt because the shock might have occurred in period one
or two. Therefore, the compensation in a two-period bond is higher than in a
one-period bond. Obviously, the compensation for all maturities increases as
the frequency of aggregate shocks,λl , increases.

The presence of aggregate shocks potentially influences the identification
of liquidity shocks. To examine this, we look at two different investors, the
average corporate bond investor with a search intensity ofρ1 = 147 and the
most sophisticated investor withρ2 = 372. Figure7 shows for different bond
maturities the price differences between the investors in steady state and after
an aggregate shock. More specifically, they-axis shows

P(ρ1, shock)− P(ρ2, shock)− [ P(ρ1, steady state) − P(ρ2, steady state)],

whereP(ρ1, state)is the bid or ask price of an investor with search intensityρ1
in state equal to “shock” or “steady state.” As the figure shows, the difference
in price differences are only modestly influenced by aggregate liquidity shocks.
So, the selling pressure measure is robust to investors anticipating future
aggregate shocks.
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Figure 7
Identification of selling pressure in presence of aggregate liquidity shocks
This graph shows how selling pressure can still be identified in presence of aggregate liquidity shocks. Price
differences are graphed for an average corporate bond investor (search intensityρ1 = 147) and the most
sophisticated investor in the sample (ρ2 = 372). On they-axis, we have the price difference between the two
investors after a shock minus the price difference in steady state.λl is the intensity of aggregate liquidity shocks.

6. Conclusion

For over-the-counter traded assets, I propose a measure that identifies when
asset prices are affected by selling pressure—namely, the price difference
between small and large trades. In a model capturing the search-and-bargaining
features in over-the-counter markets, the connection between the measure and
selling pressure is derived. I structurally estimate the model using U.S. cor-
porate bond transaction data from October 2004 to June 2009. The estimation
provides new insights into two periods of selling pressure: the downgrade
of GM/Ford and the subprime crisis. Also, the effect of trading frictions and
selling pressures on the term structure of corporate bond illiquidity premia is
examined.

The analysis raises a number of questions. Here, the U.S. corporate bond
market is examined on an aggregate level. An extension is to understand the
cross-sectional variation in selling pressure across bonds. The U.S. municipal
bond market is another illiquid over-the-counter market with transaction data
available, and the nature of its illiquidity can be studied using the approach in
this article. Even in highly liquid markets, search frictions matter, asAshcraft
and Duffie(2007) show for the federal funds market, and the Treasury market
can be viewed through the lens of a search model. In late 2008 and early 2009,
there was selling pressure in the corporate bond market, while short-term
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yields in the Treasury market were close to and on a few occasions below
zero, indicating strong demand. My model addresses selling pressure, but with
a few modifications it can be used to examine buying pressure in the Treasury
market.

Appendix A: Equilibrium Allocations and Prices

In this Appendix, the results in the text are derived. To solve the model, I adopt the analytical
methods developed inLagos and Rocheteau(2009),Lagos and Rocheteau(2007), andLagos,
Rocheteau, and Weill(2009). These articles contain more intuition with respect to the derivations.
All Poisson processes are independent.

A.1 Investor’s value function

Let U j
i (a, t, Wt ) be the maximum expected discounted utility attainable by an investor who

has preference typei , search intensityρ j , and wealthWt , and who holdsa of the bond. The
preference type is 1 for “high” or 2 for “low.” The bond holdinga is 1 or 0, andt indicates time.
Each investor’s utility for future consumption depends on his current type, search intensity, asset
holding, and wealthWt in his bank account. More specifically,

U j
i (a, t, Wt ) = sup

ζ,θ
Et

∫ ∞

0
e−r sdζt+s, (4)

subjectto

dWt = r Wt dt − dζt + θt (C − δ1{k(t)=2})dt − P̂ j
t dθt , (5)

whereζ is a cumulative consumption process,θt ∈ {0,1} is a feasible holding process,k is the
preference type process, and at the time of a possible holding change,P̂ j is the “trade price.”

The trade priceP̂ j
t ∈ {Aj

t , B j
t , F, (1 − f )F} can be the bid or ask price paid in a transaction, the

face value if the bond matures, or the fraction of face value if the bond defaults. From (4) and (5),

we have that lifetime utility isW(t) + V j
i (a, t), where

V j
i (a, t) = sup

θ
Et [
∫ ∞

t
e−r (t−s)θs(C − δ1{k(s)=2})ds − e−r (s−t) P̂ j

s dθs].

Let TM bethe time the asset matures,TD thenext time the asset defaults,T j
ρ thenext time a dealer

is met, andT j
ρM D = min(TM , TD, T j

ρ ). Then, the value function satisfies

V j
i (0, t) = Ei

[
e−r (T j

ρ −t){V j

k(T j
ρ )

(a
k(T j

ρ )
(T j

ρ ), T j
ρ ) − p j (T j

ρ )a
k(T j

ρ )
(T j

ρ )

−φ
j

k(T j
ρ )

(0,T j
ρ )}

]
(6)

V j
i (1, t) = Ei

[ ∫ T j
ρM D

t
e−r (s−t)(C − δ1{k(s)=2})ds (7)

+ 1
{T j

ρM D=T j
ρ }

e−r (T j
ρ −t){V j

k(T j
ρ )

(a
k(T j

ρ )
(T j

ρ ), T j
ρ )
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−p j (T j
ρ )(a

k(T j
ρ )

(T j
ρ ) − 1) − φ

j

k(T j
ρ )

(1,T j
ρ )}

+ 1
{T j

ρM D=TD}
e−r (TD−t){V j

k(TD)(0,TD) + (1 − f )F}

+ 1
{T j

ρM D=TM }
e−r (TM −t){V j

k(TM )(0,TM ) + F}
]
,

wherethe expectation is with respect toT j
ρ , TD , TM , andk(s). The expectation is indexed byi

to indicate that it is conditional onk(t) = i . When the investor meets a dealer at timeT j
ρ , he

chooses bond holdinga
k(T j

ρ )
(T j

ρ ) andthe holding depends on his preference typek at this time.

The bid and ask prices are decomposed into the price at which the dealer unloads the bond in

the interdealer market,p j , and the intermediation fee that the investor pays the dealer,φ
j
i . The

intermediation feeφ j
i (a, t) at time t depends on the investor’s preference typei , search intensity

ρ j , and bond holdinga before the possible trade. There is a superscriptj on the interdealer price
because interdealer markets in a liquidity crisis are assumed to be segmented according to investor
sophistication, as will be explained later. Without the segmentation assumption, there would be
one interdealer price at any timet and no need for thej -superscript.

Consider a meeting at timet between an investor and a dealer. The investor holdsa of the bond
before the meeting anda′ afterthe meeting (wherea anda′ are0 or 1). Ifa′ is different froma, the
investor traded and the dealer gains an intermediation feeφ. Let the pair(a′, φ) be the outcome
corresponding to the Nash solution to a bargaining problem with the dealer having bargaining

powerz ∈ [0, 1]. If the investor trades, his utility isV j
i (a′, t)− p j (t)(a′−a)−φ, and it isV j

i (a, t)

otherwise.His utility gain from trading is thereforeV j
i (a′, t)− V j

i (a, t)− p j (t)(a′ −a)−φ. The
bargaining outcome is

[a j
i (t), φ j

i (a, t)] = arg max
(a′,φ)

[V j
i (a′, t) − V j

i (a, t) − p j (t)(a′ − a) − φ]1−zφz,

wherea′ ∈ {0,1}. The solution can be written as

a j
i (t) = arg max

a′∈{0,1}
[V j

i (a′, t) − p j (t)a′] (8)

φ
j
i (a, t) = z

(
V j

i (a j
i (t), t) − V j

i (a, t) − p j (t)[a j
i (t) − a]

)
. (9)

Substituting(8) and (9) into (6) and (7) yields

V j
i (0, t) = Ei

[
e−r (T j

ρ −t){(1 − z) max
a′∈{0,1}

[V j

k(T j
ρ )

(a′, T j
ρ ) − p j (T j

ρ )a′] (10)

+ zV j

k(T j
ρ )

(0,T j
ρ )}

]

V j
i (1, t) = Ei

[ ∫ T j
ρM D

t
e−r (s−t)(C − δ1{k(s)=2})ds (11)

+ 1
{T j

ρM D=T j
ρ }

e−r (T j
ρ −t){(1 − z) max

a′∈{0,1}
[V j

k(T j
ρ )

(a′, T j
ρ ) − p j (T j

ρ )(a′ − 1)]

+ zV j

k(T j
ρ )

(0,T j
ρ )}
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+ 1
{T j

ρM D=TD }
e−r (TD−t){V j

k(TD)(0,TD) + (1 − f )F}

+ 1
{T j

ρM D=TM }
e−r (TM −t){V j

k(TM )(0, TM ) + F}
]
.

From the investor’s standpoint, (10) and (11) show that the stochastic trading process and the
bargaining solution are payoff-equivalent to an alternative trading arrangement in which he has all

bargaining power but meets only dealers with rateκ j = ρ j (1 − z). Let T j
κ bethe next time the

investor meets a dealer in this economy. We can rewrite (10) and (11) as

V j
i (0, t) = Ei

[
e−r (T j

κ −t) max
a′∈{0,1}

[V j

k(T j
κ )

(a′, T j
κ ) − p j (T j

κ )a′]
]

(12)

V j
i (1, t) = Ei

[ ∫ T j
κM D

t
e−r (s−t)(C − δ1{k(s)=2})ds (13)

+1
{T j

κM D=T j
κ }

e−r (T j
κ −t) max

a′∈{0,1}
[V j

k(T j
κ )

(a′, T j
κ ) − p j (T j

κ )(a′ − 1)]

+1
{T j

κM D=TD }
e−r (TD−t){V j

k(TD)(0,TD) + (1 − f )F}

+1
{T j

κM D=TM }
e−r (TM −t){V j

k(TM )(0,TM ) + F}
]
,

whereT j
κM D = min(T j

κ , TD, TM ). ForTx , x = D, M , we can use the law of iterated expectations
to show that

Ei

[
1
{T j

κM D=Tx}
e−r (Tx−t)V j

k(Tx)(0,Tx)
]

= Ei

[
1
{T j

κM D=Tx}
e−r (Tx−t)Ek(Tx)

[
e−r (T j

κ −Tx) max
a′∈{0,1}

[V j

k(T j
κ )

(a′, T j
κ ) − p j (T j

κ )a′]
]]

= Ei

[
1
{T j

κM D=Tx}
e−r (T j

κ −t) max
a′∈{0,1}

[V j

k(T j
κ )

(a′, T j
κ ) − p j (T j

κ )a′]
]
. (14)

Furthermore,

Ei [1
{T

j
κM D=TD }

e−r (TD−t)] =
∫ ∞

t

∫ ∞

t
1{x<y}e

−r (x−t)λDe−λD (x−t)(λT + κ j )e−(λT +κ j )(y−t)dydx

=
∫ ∞

t
λDe−(r +λD )(x−t)

∫ ∞

x
(λT + κ j )e−(λT +κ j )(y−t)dydx

=
∫ ∞

t
λDe−(r +λD )(x−t)e−(λT +κ j )(x−t)dx

=
λD

r + λD + λT + κ j
, (15)

andthe same calculations show that

Ei [1{T j
κM D=TM }

e−r (TM −t)] =
λT

r + λD + λT + κ j
. (16)

Substituting(14), (15), and (16) into (13) yields

V j
i (1, t) = Ei

[ ∫ T
j

κM D

t
e−r (s−t)(C − δ1{k(s)=2})ds
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+ 1
{T

j
κM D=T

j
κ }

e−r (T
j

κ −t) max
a′∈{0,1}

[V j

k(T
j

κ )
(a′, T j

κ ) − p j (T j
κ )a′] + 1

{T
j

κM D=T
j

κ }
e−r (T

j
κ −t) p j (T j

κ )

+ 1
{T

j
κM D=TD }

e−r (T
j

κ −t) max
a′∈{0,1}

[V j

k(T
j

κ )
(a′, T j

κ ) − p j (T j
κ )a′] +

λD(1 − f )F

r + λD + λT + κ j

+ 1
{T

j
κM D=TM }

e−r (T
j

κ −t) max
a′∈{0,1}

[V j

k(T
j

κ )
(a′, T j

κ ) − p j (T j
κ )a′] +

λT F

r + λD + λT + κ j

]

= Ei

[ ∫ T
j

κM D

t
e−r (s−t)(C − δ1{k(s)=2})ds

]
+ Ei

[
1
{T

j
κM D=T

j
κ }

e−r (T
j

κ −t) p j (T j
κ )
]

+ Ei

[
e−r (T

j
κ −t) max

a′∈{0,1}
[V j

k(T
j

κ )
(a′, T j

κ ) − p j (T j
κ )a′]

]
+

λD(1 − f )F + λT F

r + λD + λT + κ j
, (17)

whereI have used 1
{T j

κM D=TM }
+ 1

{T j
κM D=TD}

+ 1
{T j

κM D=T j
κ }

= 1. Rewriting (12) and (17)

gives

V j
i (a, t) = U

j
i (a) + Ei

[
e−r (T j

κ −t) max
a′∈{0,1}

[V j

k(T j
κ )

(a′, T j
κ ) − p j (T j

κ )a′]
]

+a

{
Ei

[
1
{T j

κM D=T j
κ }

e−r (T j
κ −t) p j (T j

κ )
]

+
λD(1 − f )F + λT F

r + λD + λT + κ j

}
(18)

U
j
i (a) = aEi

[ ∫ T j
κM D

t
e−r (s−t)(C − δ1{k(s)=2})ds

]
.

A.2 Prices

By combining (8) and (18), the problem of an investor who meets a dealer at timet is found to be

max
a′∈{0,1}

[
U

j
i (a′) − {p j (t) − Ei

[
1
{T j

κM D=T j
κ }

e−r (T j
κ −t) p j (T j

κ )
]

−
λD(1 − f )F + λT F

r + λD + λT + κ j
}a′
]
. (19)

Next, the twotermsU
j
i (a′) andEi

[
1
{T j

κM D=T j
κ }

e−r (T j
κ −t) p j (T j

κ )
]

in (19) are rewritten. LetTλ

be the next time the investor is hit by a preference shock, and letT j
λκ = min(Tλ, T j

κ ), TM D =

min(TM , TD), and T j
λκM D = min(T j

λκ , TM D). Obviously, we havethat U
j
i (0) = 0. Further-

more,

U
j
i (1) = Ei

[ ∫ T j
κM D

t
e−r (s−t)(C − δ1{k(s)=2})ds

]

= Ei

[ ∫ T j
λκM D

t
e−r (s−t)(C − δ1{k(s)=2})ds

+1
{T j

λκ<TM D }
1
{Tλ<T j

κ }
e−r (Tλ−t)U

j
k(Tλ)(1) + 1

{T j
λκ>TM D }

e−r (TM D−t)U
j
i (0)

]

= Ei

[ ∫ T j
λκM D

t
e−r (s−t)(C − δ1{i =2})ds + 1

{T j
λκ<TM D }

1
{Tλ<T j

κ }
e−r (Tλ−t)U

j
k(Tλ)(1)

]
.

(20)

We have that

Ei

[ ∫ T j
λκM D

t
e−r (s−t)(C − δ1{i =2})ds
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= (C − δ1{i =2})

∫ ∞

t

[ ∫ x

t
e−r (s−t)ds

]
(λ + κ j + λD + λT )e−(λ+κ j +λD+λT )(x−t)dx

=
C − δ1{i =2}

r + κ j + λ + λD + λT
. (21)

Let us denoteπ1 = (1 − π) andπ2 = π . Then,

Ei

[
1
{T j

λκ<TM D }
1
{Tλ<T j

κ }
e−r (Tλ−t)U

j
k(Tλ)(1)

]

=
∫ ∞

0

∫ ∞

0

∫ ∞

0
1{τλ<τM D}1{τλ<τ

j
κ }

e−r τλ
[ 2∑

k=1

πkU
j
k(1)

]

× λe−λτλκ j e−κ j τ
j
κ (λD + λT )e−(λD+λT )τDM dτλdτ

j
κ dτDM

=
[ 2∑

k=1

πkU
j
k(1)

] ∫ ∞

0

∫ τDM

0

∫ ∞

τλ

e−r τλ

× κ j e−κ j τ
j
κ λe−λτλ (λD + λT )e−(λD+λT )τDM dτ

j
κ dτλdτDM

=
λ
[∑2

k=1 πkU
j
k(1)

]

r + λD + λT + λ + κ j
. (22)

Inserting(21) and (22) into (20) gives

U
j
i (1) =

C − δ1{i =2} + λ
[∑2

k=1 πkU
j
k(1)

]

r + κ j + λ + λD + λT
. (23)

Multiply (23) byπi , add overi , solve for
∑2

i =1 Ui (a)πi , and substitute this expression back into
(23) to obtain

U
j
i (1) =

1

r + κ j + λ + λD + λT

[
C − δ1{i =2} +

(C − δπ2)λ

r + κ j + λD + λT

]
. (24)

Theterm Ei

[
1
{T j

κM D=T j
κ }

e−r (T j
κ −t) p j (T j

κ )
]

in (19) can be simplified as

Ei

[
1
{T j

κM D=T j
κ }

e−r (T j
κ −t) p j (T j

κ )
]

=
∫ ∞

t

∫ ∞

s
e−r (s−t) p j (s)(λT + λD)

× e−(λT +λD)(y−t)κ j e−κ j (s−t)dyds

= κ j
∫ ∞

0
e−(r +κ j +λT +λD)s p j (t + s)ds. (25)

If we substitute (24) and (25) into (19), the problem of an investor who meets a dealer at timet is

max
a′∈{0,1}

[
U

j
i (a′) − q j (t)a′

]
, (26)

where

U
j
i (a) =

a

r + κ j + λ + λD + λT

[
C − δ1{i =2} +

(C − δπ2)λ

r + κ j + λD + λT

]

q j (t) = p j (t) − κ j
∫ ∞

0
e−(r +κ j +λT +λD)s p j (t + s)ds −

λD(1 − f )F + λT F

r + λD + λT + κ j
. (27)
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To obtain the relationship betweenq j (t) and p j (t), we rewrite

p j (t) − q j (t) = κ j e(r +κ j +λT +λD)t
∫ ∞

t
e−(r +κ j +λT +λD)s p j (s)ds +

λD(1 − f )F + λT F

r + λD + λT + κ j
.

This is useful becausef (t) := p j (t)−q j (t) is continuous, as seen from Equation (27), so we can
differentiate with respect tot and obtain

κ j q j (t) + (λD(1 − f ) + λT )F = (r + λD + λT ) f (t) −
�
f (t).

Integrating this forward yields

p j (t) = q j (t) +
∫ ∞

t
e−(r +λD+λT )(s−t)[κ j q j (s) + (λD(1 − f ) + λT )F ]ds. (28)

A.3 Asset Holdings

Next, we find the clearing condition in the asset market. Irrespective of asset holding, investors
with search intensityρ j have the same probability of meeting a dealer. LetAj (t) be the total
amount of the asset held by these investors, so the total amount of bonds outstanding at timet is
A(t) =

∑N
j =1 Aj (t). According to the law of large numbers, the instantaneous quantity of assets

supplied in the interdealer market by these investors isρ j A j (t).
17 The supplied quantity by all

investors is
∑N

j =1 ρ j A j (t). Because firms issue new bonds at intensity(λT + λD)A(t), the total
supplied quantity is

(λT + λD)A(t) +
N∑

j =1

ρ j A j (t).

Let n j
i (t) bethe measure of investors with preference typei and search intensityρ j at time t . The

process for preference shocks implies that

n j
i (t) = e−λt n j

i (0) + (1 − e−λt )
πi

N
, (29)

sincethe total mass of investors with search intensityρ j is 1
N . The instantaneous quantity of

investors with search intensityρ j and preference statei who meet a dealer isρ j n j
i (t). Let

ρ j n j
i (t)a j

i (t) be their equilibrium demand.a j
i (t) is equal toa j

i (t) except if the investor is

indifferent between buying or selling. In thiscase,a j
i (t) is the number between zero and one

such that the following clearing condition for the asset market is satisfied:

(λT + λD)A(t) +
N∑

j =1

ρ j A j (t) =
N∑

j =1

2∑

i =1

ρ j n j
i (t)a j

i (t). (30)

We now find the distribution of investors’ states. LetH j
t (a, i ) bethe time-t measure of investors

with search intensityρ j andpreference typei , and whose asset holding isa. Let n0, j
ki (a, t) bethe

17 Over a short time perioddt , the measure of bond-owning investors who meet with a dealer isρ j A j (t)dt , of
which a fraction1 − (λM + λD)dt donot have their bond maturing or defaulting during the same period. Thus,

l im
dt→0

ρ j A j (t)dt[1−(λM +λD )dt]
dt = ρ j A j (t).
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time-t measureof investors with search intensityρ j whostarted off with preference typek, whose
preference type isi and asset holding isa at timet and who have never met a dealer. The measure
of investors with asset holdinga who started as typei and who have never met a dealer is for

a = 1 equal toe−(ρ j +λT +λD)t H j
0 (1, i ), while for a = 0 it is (1−e−(λT +λD)t )e−ρ j t H j

0 (1, i )+

e−ρ j t H j
0 (0, i ). The fraction of investors who were of preference typej at time 0 and are of type

i at timet is (1 − e−λt )πi + e−λt 1{ j =i }. Thus,

n0, j
ki (1, t) = [(1 − e−λt )πi + e−λt 1{ j =i }]e

−(ρ j +λT +λD)t H j
0 (1, i ) (31)

n0, j
ki (0, t) = [(1 − e−λt )πi + e−λt 1{ j =i }](1 − e−(λT +λD)t )e−ρ j t H j

0 (1, i ) + e−ρ j t H j
0 (0, i ).

Let n j
ki (at , at−τ , τ, t) be the time-t density of investors with search intensityρ j , who have bond

holdingat andpreference typei at timet , and whose last time they met a dealer was at timet − τ

when their preference type wask and they chose to holdat−τ of the bond. The density measure

of investors who last met a dealer at timet − τ is ρ j e−ρ j τ . Fora j
k (t − τ) = 1, they still hold the

bond if it does not mature/default betweent − τ andt . The bond does not default/mature between
t − τ andt with probabilitye−τ(λT +λD), so

n j
ki (1,1,τ, t) = ρ j e−ρ j τ e−τ(λT +λD)

[
(1 − e−λτ )πi + e−λτ 1{k=i }

]
n j

k(t − τ )a j
k(t − τ)

n j
ki (0,1,τ, t) = ρ j e−ρ j τ (1 − e−τ(λT +λD))

[
(1 − e−λτ )πi + e−λτ 1{k=i }

]
n j

k(t − τ )a j
k(t − τ)

n j
ki (a, 0,τ, t) = 1{a=0}ρ

j e−ρ j τ
[
(1 − e−λτ )πi + e−λτ 1{k=i }

]
n j

k(t − τ)[1 − a j
k(t − τ)].

Now we have

H j
t (a, i ) =

2∑

k=1

[
n0, j

ki (a, t) +
∫ t

0
n j

ki (a, 1,τ, t) + n j
ki (a, 0,τ, t)dτ

]
. (32)

The first term
∑2

k=1 n0, j
ki (a, t) are thoseρ j -investors with preferencei and bond holdinga at

time t who have never met a dealer. The time-t measure ofρ j -investors with preferencei and
asset holdinga who chose to hold the bond at the last time they met with a dealer, given that their

preference type at that time wask, is
∫ t
0 n j

ki (a, 1,τ, t)dτ . The time-t measure ofρ j -investors with
preferencei and asset holdinga who chose not to hold the bond at the last time they met with a

dealer, given that their preference type at that time wask, is
∫ t
0 n j

ki (a, 0,τ, t)dτ .

A.4 Proof of Theorem2.1

We now find the prices prevailing in steady state. In the notation, dependence on time is ignored

because we are looking at steady-state quantities. We have thatlimt→∞n j
i (t) = πi

N accordingto
(29). In steady state, the interdealer price is constant and the same for all investors, so (27) gives
us

q j =
( r + λT + λD

r + κ j + λT + λD

)
pss −

λD(1 − f )F + λT F

r + λD + λT + κ j
. (33)
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Using(24), we have

U
j
i (1) − q j =

1

r + κ j + λ + λD + λT

[
C − δ1{i =2} +

(C − δπ2)λ

r + κ j + λD + λT

]

−
( r + λT + λD

r + κ j + λT + λD

)
pss +

λD(1 − f )F + λT F

r + λD + λT + κ j

=
C + λD(1 − f )F + λT F

r + λD + λT + κ j
−
( r + λT + λD

r + κ j + λT + λD

)
pss

−
δ

r + κ j + λ + λD + λT

[
1{i =2} +

π2λ

r + κ j + λD + λT

]
. (34)

Accordingto (26), if U
j
i (1) − q j < 0 thena j

i = 0 (selling), whilea j
i = 1 (buying) if U

j
i (1)

− q j > 0. The bond market clearing condition (30) implies that there is at least one class of
investors with preferencem and search intensityκn who have 0< an

m < 1 and are indifferent
between buying or selling.18 For this class, we haveU

n
m(1)− qn = 0, and the interdealer price is

given as

pss =
C + λD(1 − f )F + λT F

r + λD + λT
− δ

[ 1{m=2}(r + κn + λD + λT ) + λπ2

(r + κn + λ + λD + λT )(r + λD + λT )

]
. (35)

Combining(34) and (35), weget

U
j
i (1) − q j =

δ

r + κ j + λT + λD

[1{m=2}(r + κn + λT + λD) + λπ2

r + κn + λ + λT + λD

−
1{i =2}(r + κ j + λT + λD) + λπ2

r + κ j + λ + λT + λD

]

= C1

[
(κ j − κn)λπ2 + λ(1{m=2}κ

n − 1{i =2}κ
j ) + (1{m=2} − 1{i =2})C2

]
,

whereC1 = δ
(r +κ j +λT +λD)(r +κ j +λ+λT +λD)(r +κn+λ+λT +λD)

andC2 = λ(r +λT +λD)+(r +

κn +λT +λD)(r +κ j +λT +λD) arepositive for any parameter values. Assume thatm = 1. This

implies that the marginal buyer is a high type. Fori = 1, we haveU
j
1(1)−q j = (κ j −κn)C1λπ2.

Thus,high types with lower search intensities than the marginal buyer sell, while high types with

higher search intensities buy. Fori = 2, we haveU
j
2(1)−q j = −C1[λκ j (1−π2)+λπ2κn+C2] <

0. SinceU
j
2(1) − q j < 0, low types sell. Assume now thatm = 2. For i = 2, we have U

j
2(1) −

q j = (κn − κ j )C1λ(1 − π2). So, when the marginal buyer is a low type, investors with lower
search intensities than the marginal buyer buy while those with higher search intensities sell. For

i = 1, we haveU
j
1(1)−q j = C1[κ j λπ2+(1−π2)λκn +C2] > 0,so all high-type investors buy.

The above shows that when bond supply is low the marginal buyer is a high type, and low
types and more unsophisticated high types are sellers. When bond supply is high, the marginal
buyer is a low type and more sophisticated low types are sellers while all other investors are
buyers. In particular, when the most unsophisticated investors are marginal buyers, we see both
buys and sells from more sophisticated investors (investors with higher search intensities). If the
most unsophisticated investors are not marginal buyers, then unsophisticated investors always buy
or never trade in steady state.

We can now calculate the intermediation fee. If we plug (18) into (9), we can calculate the fee:

φ
j
i (a) = z[U

j
i (a′) − U

j
i (a) − q j (a′ − a)], (36)

18 Exceptin the knife-edge case, where the clearing condition is satisfied with alla’s being 0 or 1. In this case, the
price is not uniquely identified.
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wherea′ is the solution to (26) anda is the old bond holding. Any investor class with search
intensityκ j wherethe investors both buy and sell must have that high types buy and low types

sell. According to (36), the ask price ispss+z(U
j
1(1)−q j ), the bid price ispss+z(U

j
2(1)−q j ),

andthe bid-ask spread is given as

φ
j
1(0) − φ

j
2(1) = z[U

j
1(1) − U

j
2(1)] =

δz

r + κ j + λ + λD + λT
.

A.5 Bond Supply

We saw in the previous section that when the most unsophisticated investors are marginal buyers
in steady state, there are both buy and sell transactions by investors with search intensityρ j for
j = 1, ..., N. If the most unsophisticated investors are not marginal buyers in steady state, this
is not the case. To find the bond supply for which the investors with the lowest search intensity

are marginal buyers, we note again that (29) gives thatn j
i (t) = πi

N . Also, from (31), n0, j
ki = 0.

Equation(32) gives us the measure ofρ j -investors who own bonds in steady state as

Aj =
2∑

i =1

H j (1, i ) =
2∑

i =1

2∑

k=1

a j
kρ j πk

N

(
πi

ρ j + λT + λD
+

1{k=i } − πi

λ + ρ j + λT + λD

)

=
1

N
ρ j

2∑

i =1




πi [
∑2

k=1 a j
kπk]

ρ j + λT + λD
+

a j
i πi − [

∑2
k=1 a j

kπk]πi

λ + ρ j + λT + λD





=
1

N
ρ j




[
∑2

k=1 a j
kπk]

ρ j + λT + λD
+

[
∑2

k=1 a j
kπk] − [

∑2
k=1 a j

kπk]

λ + ρ j + λT + λD





=
1

N

ρ j

ρ j + λT + λD




2∑

k=1

a j
kπk



 .

Theclearing condition (30) gives

(λT + λD)A +
1

N

N∑

j =1

ρ j




ρ j [

∑2
k=1 a j

kπk]

ρ j + λT + λD



 =
N∑

j =1

2∑

i =1

ρ j πi

N
a j

i

so

1

N

N∑

j =1

ρ j

ρ j + λT + λD

2∑

k=1

a j
kπk = A. (37)

Assumethat investors with lowest search intensity are marginal buyers. This is particularly
convenient because this is the only case where we see trades by investors with search intensity

ρ j for all j . We have a j
1 = 1 for j > 1 because high investors with higher search intensities

always buy. We also have a j
2 = 0 for j > 1 because low investors with higher search

intensities always sell. The bond supply is, according to (37), betweenπ1
N
∑N

j =2
ρ j

ρ j +λT +λD
and

π1
N
∑N

j =2
ρ j

ρ j +λT +λD
+ 1

N
ρ1

ρ1+λT +λD
. If we assumethata1

1 = 1 − ω anda1
2 = 0 such that a

high investor with the lowest search intensity is the marginal buyer, the bond supply is

π1

N




N∑

j =2

ρ j

ρ j + λT + λD
+ (1 − ω)

ρ1

ρ1 + λT + λD



 . (38)
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Whenhigh investors are marginal buyers, the midprice—the average price of a buy and sell—
of investors with high search intensities is higher than the midprice of investors with low search
intensities. This case essentially corresponds to Condition 1 inDuffie, Gârleanu, and Pedersen
(2005). The reverse is the case if low investors are marginal buyers. Because the empirical section
shows that the midprice of large trades is higher than the midprice of small trades, I assume that
high investors are marginal buyers in steady state.

A.6 Proof of Theorem2.2

Whena liquidity shock of sizes occurs, a high investor becomes a low investor with probability
s. In steady state, the mass of high investors with search intensityρ j is π1

N , so immediately after

the liquidity shock it is(1−s)π1
N . Denote the time the shock occurs as time 0 and the mass of high

investors asn1(0) (we can ignore a superscriptj becausen1(0) is the same for allj ). There is a
subscripts on variables to indicate that they at a given time depend on the size of the shock, but
occasionally I drop the subscript. We have that

n1(0) = (1 − s)
π1

N
,

andaccording to (29),

n1(t) =
π1

N

(
1 − se−λt

)
.

Assumealso that the bond supply is as in (38) and that markets are segmented until the timet ,
wheren1(t) = π1

N (1 − ω). If n2(0) ≥ π1
N (1 − ω) markets never become segmented, and this is

the case ifs ≤ ω. According to (28), we have that
∫ ∞

t
e−(r +λD+λT )s[κ j q j

s (u) + (λD(1 − f ) + λT )F ]du = e−(r +λD+λT )t [ ps(t) − q j
s (t)],

while
∫ t

0
e−(r +λD+λT )u[κ j q j

s (u) + (λD(1 − f ) + λT )F ]du

=
(
1 − e−(r +λD+λT )t

)
(

κ j q j
s (0) + (λD(1 − f ) + λT )F

r + λD + λT

)

,

so

p j
s (0) = q j (0) + e−(r +λD+λT )t [ p(t) − q j (t)] +

(
1 − e−(r +λD+λT )t )

×

(
κ j q j (0) + (λD(1 − f ) + λT )F

r + λD + λT

)

= e−(r +λD+λT )t [ p(t) + q j (0) − q j (t)] +
(
1 − e−(r +λD+λT )t

)

×

(
r + κ j + λD + λT

r + λD + λT
q j (0) +

(λD(1 − f ) + λT )F

r + λD + λT

)

. (39)

Assumefirst that thes ≤ ω so that markets do not become segmented. Immediately after the
liquidity shock, the clearing condition is, according to (30),

(λT + λD)A(t) +
N∑

j =1

ρ j A j (t) =
N∑

j =1

2∑

i =1

ρ j n j
i (t)a j

i (t). (40)
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BecauseAj = 1
N

ρ j π1
ρ j +λT +λD

, j = 2, ..., N and A1 = 1
N

(1−ω)π1ρ1

ρ1+λT +λD
, in steady state the left-

hand side of (40) immediately after the shock isπ1
N (
∑N

j =2 ρ j + (1−ω)ρ1). If the marginal buyer

after the shock is still a (ρ1)-high investor, there is no price reaction and prices are equal to steady
state prices. This is the case if in (40) we have

(λT + λD)A(t) +
N∑

j =1

ρ j A j (t) ≤
N∑

j =1

ρ j n j
1(t). (41)

Becausethe left-hand side immediately after the shock isπ1
N (
∑N

j =2 ρ j + (1 − ω)ρ1), we have

π1

N




N∑

j =2

ρ j + (1 − ω)ρ1



 ≤
N∑

j =1

ρ j (1 − s)
π1

N
, (42)

so for s ≤ ω ρ1
∑N

j =1 ρi
thereis no price reaction. Calculations as before (nowwith a1

2 = 1) show

that for ρ1(1−π1)+ωρ1

π1
∑N

j =2 ρ j
≥ s > ω ρ1

∑N
j =1 ρi

themarginal buyer is a low investor with search intensity

ρ1. Assume that

ω ≤
ρ1(1 − π1)

π1
∑N

j =2 ρ j
. (43)

Becausemarkets are integrated whens ≤ ω, (43) implies that the marginal buyer is a lowρ1-

investor forω ≥ s > ω ρ1
∑N

j =1 ρi
. In this case, according to (29), the marginal buyer becomes a

highρ1-investor and prices return to steady-state prices at timet1(s), wheret1 solves

e−λt1(1 − s)
π1

N
+ (1 − e−λt1)

π1

N
=



1 − ω
ρ1

∑N
j =1 ρi



 π1

N
.

Rearranging,we gett1(s) = log
(

s
ω

∑N
j =1 ρ j

ρ1

)
/λ. For ω ≥ s > ω ρ1

∑N
j =1 ρi

, we can calculate

prices for any 0≤ t < t1(s). Beforet1(s), the marginal buyer is a lowρ1-investor, soq1
s (0) =

U
1
2(1). At t1(s), the marginal buyer becomes a highρ1-investor, soq1

s (t1(s)) = U
1
1(1). Insert

q1
s (t1(s)) andq1

s (0) in (39) to get

ps(t) = pss − V(t1(s) − t) (44)

V(t) = δ
r + λD + λT + κ1

(
1 − e−(r +λD+λT )t

)

(r + κ1 + λ + λD + λT )(r + λD + λT )
, (45)

wherepss is the steady-state price in (35). According to (27),

q j
s (t) = ps(t) − κ j

∫ ∞

0
e−(r +κ j +λT +λD )u ps(t + u)du −

λD(1 − f )F + λT F

r + λD + λT + κ j

= ps(t) − κ j
∫ t1(s)−t

0
e−(r +κ j +λT +λD )u ps(t + u)du − κ j

∫ ∞

t1(s)−t
e−(r +κ j +λT +λD )u pssdu

−
λD(1 − f )F + λT F

r + λD + λT + κ j
.
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Because

∫ t1(s)−t

0
e−(r +κ j +λT +λD )ue−(r +λD+λT )(t1(s)−t−u)du =

e−(r +λD+λT )(t1(s)−t) − e−(r +κ j +λT +λD )(t1(s)−t)

κ j
,

calculationsshow that

q j
s (t) =

r + λT + λD

r + κ j + λT + λD
pss − δ

1

(r + κ1 + λ + λT + λD)(r + κ j + λT + λD)
×

[
r + κ1 + λT + λD + e−(r +κ j +λT +λD )(t1(s)−t)(κ j − κ1)

]
−

λD(1 − f )F + λT F

r + λD + λT + κ j

=
1

r + κ j + λT + λD

[
C − δ

r + κ1 + λπ2 + λT + λD + e−(r +κ j +λT +λD )(t1(s)−t)(κ j − κ1)

r + κ1 + λ + λD + λT

]
,

and the ask price isps(t) + z(U
j
1(1) − q j

s (t)), while the bid price is the ask price minus
δz

r +κ j +λ+λD+λT
. As shown in (33), the steady-state value ofq is q j

ss = r +λT +λD
r +κ j +λT +λD

pss −

λD(1− f )F+λT F
r +λD+λT +κ j , so

q j
s (t) = q j

ss − δ
r + κ1 + λT + λD + e−(r +κ j +λT +λD)(t1(s)−t)(κ j − κ1)

(r + κ1 + λ + λT + λD)(r + κ j + λT + λD)
.

Therefore,we havethatU
j
1(1) − q j

s (t) = Rj + Sj (t1(s) − t), where

Rj = U
j
1(1) − q j

ss = δ
(κ j − κ1)π2λ

(r + κ1 + λ + λT + λD)(r + κ j + λT + λD)(r + κ j + λ + λT + λD)

(46)

Sj (t) = δ
r + κ1 + λT + λD + e−(r +κ j +λT +λD )t (κ j − κ1)

(r + κ1 + λ + λT + λD)(r + κ j + λT + λD)
. (47)

Combiningthis result with (44), we find the ask price to be

Aj
s(t) = ps(t) + z[U

j
1(1) − q j

s (t)]

= pss − V(t1(s) − t) + z[U
j
1(1) − q j

ss + Sj (t1(s) − t)]

= Aj
ss − V(t1(s) − t) + zSj (t1(s) − t). (48)

Now we find the price for a liquidity shock of sizes > ω. In this case, the market is segmented
for a time period oft2(s) = l og( s

ω )/λ after the shock (t2 is found in the same way ast1).
Assumethat while markets are segmented, newly issued bonds are sold in the same proportion to
different investors as in steady state. (If firms issue bonds with intensityε to ρ j -investors in steady
state, they issue bonds with the same intensity toρ j -investors while markets are segmented.) For
investor j , the clearing condition while markets are segmented is

(ρ j + λT + λD)Aj =
2∑

i =1

ρ j ni (t)a
j
i (t),

so

N(ρ j + λT + λD)

ρ j
A j = [1 − π2 − s(1 − π2)e−λt ]a j

1(t) + [π2 + s(1 − π2)e−λt ]a j
2(t).
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In steady state,Aj = 1
N

ρ j

ρ j +λT +λD
[
∑2

k=1 πka j,ss
k ], so the clearing condition implies that

(1 − π2)(a j
1(t) − a j,ss

1 ) + π2(a j
2(t) − a j,ss

2 ) = s(1 − π2)e−λt [a j
1(t) − a j

2(t)]. (49)

Becausea j
1(t) − a j

2(t) ≥ 0 (high types always buy before low types), we have that

(1 − π2)(a j
1(t) − a j,ss

1 ) + π2(a j
2(t) − a j,ss

2 ) ≥ 0. (50)

If a j,ss
1 = 1, thena j

1(t) = 1 (for a j
1(t) < 1 wouldimply a j

2(t) = 0 and then (50) cannot be true).

Furthermore,a j
2(t) > 0 (else (49) is not true) and low types are marginal buyers. In the proof of

Theorem2.1, we showedthata j,ss
1 = 1 for j ≥ 2, so the marginal buyer forj ≥ 2 is a low type

for t < t2(s) afterthe shockbecausea j
2(t) > 0, as just shown. For investors with search intensity

ρ1, we need to check whether high investors are marginal buyers at some point while markets
are segmented. The clearing condition (49) gives us that after a liquidity shock, the marginalρ1-

buyer is a low investor until timet = log(s/ω)
λ . This is precisely the time when markets become

integrated, so the marginal buyer forρ1-investors is also a low type while markets are segmented.
Thus, for anyj ,

q j
s (t) = U

j
2(1) =

1

r + κ j + λ + λD + λT

[
C − δ +

(C − δπ2)λ

r + κ j + λD + λT

]

=
C

r + κ j + λD + λT
− δ

r + κ j + π2λ + λD + λT

(r + κ j + λ + λD + λT )(r + κ j + λD + λT )

for 0 ≤ t ≤ t2(s), and the price immediately after a shock of sizes is, according to (39),

p j
s (0) = e−(r +λD+λT )t2(s)[ p j

s (t2(s)) + U j
2 (1) − q j

s (t2(s))]

+(1 − e−(r +λD+λT )t2(s))
(C + (λD(1 − f ) + λT )F

r + λD + λT
− δ

r + κ j + π2λ + λD + λT

(r + κ j + λ + λD + λT )(r + λD + λT )

)
.

Becausemarkets become integrated at timet2(s), we have thatp j
s (t2(s)) = pω(t1(ω)) and

q j
s (t2(s)) = q j

ω(t1(ω)). Therefore,

pj
s (t2(s)) + U j

2 (1) − q j
s (t2(s)) = pω(t1(ω)) + U j

2 (1) − q j
ω(t1(ω))

= B j
ω(t1(ω)) + (1 − z)[U j

2 (1) − q j
ω(t1(ω))]

= B j
ω(t1(ω)) + (1 − z)

[
U j

1 (1) − q j
ω(t1(ω)) −

δ

r + κ j + λ + λT + λD

]

= B j
ω(t1(ω)) + (1 − z)

[
R + Sj (t1(ω)) −

δ

r + κ j + λ + λT + λD

]
,

whereR andSj aregiven in (46) and (47). Since the bid price isB j
s (0) = p j

s (0) while the ask

price isAj
s(0) = p j

s (0) + δz
r +κ j +λ+λD+λT

, we have

B j
s (0) = e−(r +λD+λT )t2(s)

(
B j

ω(t1(ω)) + (1 − z)

[
R + Sj (t1(ω)) −

δ

r + κ j + λ + λT + λD

] )

+ (1 − e−(r +λD+λT )t2(s))
(C + (λD(1 − f ) + λT )F

r + λD + λT
− δ

r + κ j + π2λ + λD + λT

(r + κ j + λ + λD + λT )(r + λD + λT )

)

+
δz

r + κ j + λ + λD + λT

andthe ask price isAj
s(0) = B j

s (0) + δz
r +κ j +λ+λD+λT

.
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A.7 Proof of Theorem2.3

To prove Theorem2.3for s > ω, we rewrite the expression forp j
s (0)

p j
s (0) = U j

2 (1) − q j
ω(t1(ω)) + e−(r +λD+λT )t2(s) pω(t1(ω)) + (1 − e−(r +λD+λT )t2(s))

×
(
q j
ω(t1(ω)) − U j

2 (1) +
C + (λD(1 − f ) + λT )F

r + λD + λT
− δ

r + κ j + π2λ + λD + λT

(r + κ j + λ + λD + λT )(r + λD + λT )

)
.

To prove the theorem, we need to show that
∂[ pi

s(0)−p j
s (0)]

∂s > 0 for anyκ i < κ j , and this amounts

to showing ∂2 p j
s (0)

∂s∂κ j < 0.19 SinceU j
2 (1) andq j

ω(t1(ω)) do not depend ons, e−(r +λD+λT )t2(s)

and pω(t1(ω)) do not depend onκ j , and ∂(1−e−(r +λD+λT )t2(s))
∂s > 0 since ∂t2(s)

∂s > 0, we have
to show that

∂

∂κ j

[
δ

r + κ j + π2λ + λD + λT

(r + κ j + λ + λD + λT )(r + λD + λT )
+ U j

2 (1) − q j
ω(t1(ω))

]
> 0.

If we define1 = r + λD + λT , calculations show that

δ
κ j + π2λ + 1

(κ j + λ + 1)1
+ U j

2 (1) − q j
ω(t1(ω))

=
δ

κ j + 1

( (κ j + π2λ + 1)κ j

(κ j + λ + 1)1
+

κ1 + λπ2 + 1 + e−(κ j +1)t1(ω)(κ j − κ1)

κ1 + λ + 1

)
.

Since

∂

∂κ j

( (κ j + π2λ + 1)κ j

κ j + λ + 1

)
=

(1 − π2)λκ j

(κ j + λ + 1)2
+

κ j + π2λ + 1

κ j + λ + 1
,

wehave that

∂

∂κ j

[ 1

κ j + 1

( (κ j + π2λ + 1)κ j

(κ j + λ + 1)1
+

κ1 + λπ2 + 1 + e−(κ j +1)t1(ω)(κ j − κ1)

κ1 + λ + 1

)]

= −
1

(κ j + 1)2

( (κ j + π2λ + 1)κ j

(κ j + λ + 1)1
+

κ1 + λπ2 + 1 + e−(κ j +1)t1(ω)(κ j − κ1)

κ1 + λ + 1

)

+
1

κ j + 1

( (1 − π2)λκ j

(κ j + λ + 1)21
+

κ j + π2λ + 1

(κ j + λ + 1)1
+

1 − t1(ω)(κ j − κ1)

κ1 + λ + 1
e−(κ j +1)t1(ω)

)

=
κ j + π2λ + 1

(κ j + λ + 1)(κ j + 1)
+

1e−(1+κ j )t1(ω)

(κ1 + λ + 1)(κ j + 1)
+

κ1e−(1+κ j )t1(ω)

(κ1 + λ + 1)(κ j + 1)2

−
t1(ω)(κ j − κ1)e−(1+κ j )t1(ω)

(κ1 + λ + 1)(κ j + 1)
−

κ1 + π2λ + 1

(κ1 + λ + 1)(κ j + 1)2
+

(1 − π2)λκ j

(κ j + λ + 1)2(κ j + 1)1

≥
κ j + π2λ + 1

(κ j + λ + 1)(κ j + 1)
+

1e−(1+κ j )t1(ω)

(κ1 + λ + 1)(κ j + 1)
+

κ1e−(1+κ j )t1(ω)

(κ1 + λ + 1)(κ j + 1)2

−
e−(1+κ1)t1(ω)−1

(κ1 + λ + 1)(κ j + 1)
−

κ1 + π2λ + 1

(κ1 + λ + 1)(κ j + 1)2
+

(1 − π2)λκ j

(κ j + λ + 1)2(κ j + 1)1

19 Thisstatement is strictly correct when assuming
∂t1(s)

∂κ j = 0. I assume this in the following.
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=
(1 − π2)λκ j

(κ j + λ + 1)2(κ j + 1)1
+

[1(κ j + 1) + κ1]e−(1+κ j )t1(ω)

(κ1 + λ + 1)(κ j + 1)2

+
(κ j + 1)(κ j + π2λ + 1) − (κ j + 1)e−(1+κ1)t1(ω)−1 − (κ1 + π2λ + 1)

(κ1 + λ + 1)(κ j + 1)2
,

whereI have used that the maximum off (κ j ) = t1(ω)(κ j − κ1)e−(1+κ j )t1(ω) is κ j = 1
t1(ω) +

κ1. Since

(κ j + 1)(κ j + π2λ + 1) − (κ j + 1)e−(1+κ1)t1(ω)−1 − (κ1 + π2λ + 1)

≥ (κ j + 1)(κ j + π2λ + 1) − (κ j + 1)e−(1+κ1)t1(ω)−1 − (κ j + π2λ + 1)

= π2λ(κ j + 1 − 1) + (κ j + 1)(κ j + 1 − 1 − e−(1+κ1)t1(ω)−1),

asufficient condition for∂
2 p j (0)

∂s∂κ j < 0 is thatκ j + 1 > 1 + e−(1+κ1)t1(ω)−1.

Appendix B: Aggregate liquidity shocks

In this section, I derive prices when investors anticipate that aggregate liquidity shocks might occur
in the future. The derivations follow those in the previous section, so they are less detailed here
and in some cases omitted.

Assume that an aggregate liquidity shock of size 1 defined in Definition2.1 occurs with a
Poisson intensityλl (independentof all other random variables). That is, when a liquidity shock
occurs, all investors become low investors. As inDuffie, Gârleanu, and Pedersen(2007) we denote
time t = 0 as the time where an aggregate liquidity shock occurs, and when a liquidity shock
occurs again the time is reset to 0. Knowledge of the times at which shocks occur allows a
translation of the solution to calendar time. A price at timet is the price prevailing when a liquidity

shock last happenedt years ago. LetT j
ρ be the next time a dealer is met,TD the next time the

bond defaults,TM thenext time the bond matures,Tl thenext time an aggregate liquidity shock

occurs,T j
ρl = min(T j

ρ , Tl ), andT j
ρM Dl = min(T j

ρ , TM , TD, Tl ). The value function at timet is

V j
i (0, t) = Ei

[
1
{T j

ρl =Tl }
e−r (Tl −t)V j

2 (0,0) (51)

+ 1
{T j

ρl =T j
ρ }

e−r (T j
ρ −t){V j

k(T j
ρ )

(a
k(T j

ρ )
(T j

ρ ), T j
ρ ) − p j (T j

ρ )a
k(T j

ρ )
(T j

ρ )

− φ
j

k(T j
ρ )

(0,T j
ρ )}

]
(52)

V j
i (1, t) = Ei

[ ∫ T j
ρM Dl

t
e−r (s−t)(C − δ1{k(s)=2})ds + 1

{T j
ρM Dl =Tl }

e−r (Tl −t)V j
2 (1,0) (53)

+ 1
{T j

ρM Dl =T j
ρ }

e−r (T j
ρ −t){V j

k(T j
ρ )

(a
k(T j

ρ )
(T j

ρ ), T j
ρ ) − p j (T j

ρ )(a
k(T j

ρ )
(T j

ρ ) − 1)

− φ
j

k(T j
ρ )

(1,T j
ρ )}

+ 1
{T j

ρM Dl =TD}
e−r (TD−t){V j

k(TD)(0,TD) + (1 − f )F}

+ 1
{T j

ρM Dl =TM }
e−r (TM −t){V j

k(TM )(0,TM ) + F}
]
,
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so

V j
i (0, t) =

λl

r + ρ j + λl
V j

2 (0,0) (54)

+ Ei

[
1
{T j

ρl =T j
ρ }

e−r (T j
ρ −t){V j

k(T j
ρ )

(a
k(T j

ρ )
(T j

ρ ), T j
ρ ) − pj (T j

ρ )a
k(T j

ρ )
(T j

ρ ) − φ
j

k(T j
ρ )

(0,T j
ρ )}

]

V j
i (1, t) =

λl

r + ρ j + λD + λT + λl
V j

2 (1,0) + Ei

[ ∫ T j
ρM Dl

t
e−r (s−t)(C − δ1{k(s)=2})ds (55)

+ 1
{T j

ρM Dl =T j
ρ }

e−r (T j
ρ −t){V j

k(T j
ρ )

(a
k(T j

ρ )
(T j

ρ ), T j
ρ ) − pj (T j

ρ )(a
k(T j

ρ )
(T j

ρ ) − 1) − φ
j

k(T j
ρ )

(1,T j
ρ )}

]

+ 1
{T j

ρM Dl =TD }
e−r (TD−t){V j

k(TD )(0,TD)} + 1
{T j

ρM Dl =TM }
e−r (TM −t){V j

k(TM )(0,TM )}
]

+
λD(1 − f )F + λT F

r + ρ j + λD + λT + λl
.

As shown in the previous section, we can rewrite the value functions as

V j
i (0, t) =

λl

r + κ j + λl
V j

2 (0,0) + Ei

[
1
{T j

κl =T j
κ }

e−r (T j
κ −t){ max

a′∈{0,1}
[V j

k(T j
κ )

(a′, T j
κ ) − pj (T j

κ )a′]}
]

V j
i (1, t) =

λl

r + κ j + λD + λT + λl
V j

2 (1,0) + Ei

[ ∫ T j
κM Dl

t
e−r (s−t)(C − δ1{k(s)=2})ds

+ 1
{T j

κM Dl =T j
κ }

e−r (T j
κ −t){ max

a′∈{0,1}
[V j

k(T j
κ )

(a′, T j
κ ) − pj (T j

κ )(a′ − 1)]}

+ 1
{T j

κM Dl =TD }
e−r (TD−t){V j

k(TD )(0,TD)} + 1
{T j

κM Dl =TM }
e−r (TM −t){V j

k(TM )(0,TM )}
]

+
λD(1 − f )F + λT F

r + κ j + λD + λT + λl
,

wherethe investor meets dealers with speedκ j = ρ j (1 − z) andT j
κ is the next time the investor

meets a dealer in this economy. Lettingt = 0 on the left-hand side in the above to find the value
function at timet = 0 and entering that in the value function at timet gives

V j
i (0, t) =

λl

r + κ j
E2

[
1
{T

j
κl =T

j
κ }

e−r T
j

κ { max
a′∈{0,1}

[V j

k(T
j

κ )
(a′, T j

κ ) − p j (T j
κ )a′]}

]

+ Ei

[
1
{T

j
κl =T

j
κ }

e−r (T
j

κ −t){ max
a′∈{0,1}

[V j

k(T
j

κ )
(a′, T j

κ ) − p j (T j
κ )a′]}

]

V j
i (1, t) = Ei

[ ∫ T
j

κM Dl

t
e−r (s−t)(C − δ1{k(s)=2})ds

+ 1
{T

j
κM Dl =T

j
κ }

e−r (T
j

κ −t){ max
a′∈{0,1}

[V j

k(T
j

κ )
(a′, T j

κ ) − p j (T j
κ )(a′ − 1)]}

+ 1
{T

j
κM Dl =TD }

e−r (TD−t){V j
k(TD )(0,TD)} + 1

{T
j

κM Dl =TM }
e−r (TM −t){V j

k(TM )(0,TM )}
]

+
λl

r + κ j + λD + λT

(
E2

[ ∫ T
j

κM Dl

0
e−r s(C − δ1{k(s)=2})ds

+ 1
{T

j
κM Dl =T

j
κ }

e−r T
j

κ { max
a′∈{0,1}

[V j

k(T
j

κ )
(a′, T j

κ ) − p j (T j
κ )(a′ − 1)]}

])

+
λD(1 − f )F + λT F

r + κ j + λD + λT
.

We can use the same approach as in the previous section to find that the problem of an investor
who meets a dealer at timet is

max
a′∈{0,1}

[
U j

i (a) − {p j (t) − Ei

[
1
{T j

κM Dl =T j
κ }

e−r (T j
κ −t) p j (T j

κ )
]

−
λl

r + κ j + λD + λT
E2

[
1
{T j

κM Dl =T j
κ }

e−r T j
κ p j (T j

κ )
]
}a′
]

−
λD(1 − f )F + λT F

r + κ j + λD + λT
,

(56)
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where

U j
i (a) = U

j
i (a) +

λl

r + κ j + λD + λT
U

j
2(a)

U
j
i (a) = aEi

[ ∫ T j
κM Dl

t
e−r (s−t)(C − δ1{k(s)=2})ds.

The calculations in the previous section showthat

U
j
i (1) =

C

r + κ j + λD + λT + λl
− δ

1{i =2} + π2λ

r +κ j +λD+λT +λl

r + κ j + λ + λD + λT + λl
,

andfurthermore show that the problem of an investor is

max
a′∈{0,1}

[
U j

i (a′) − q j (t)a′
]
, (57)

where

U j
i (a) = a

( C

r + κ j + λD + λT
− δ

π2λ + 1{i =2}(κ
j + r + λD + λT ) + λl

(r + κ j + λD + λT )(r + κ j + λ + λD + λT + λl )

)

(58)

q j (t) = p j (t) −
κ j λl

r + κ j + λD + λT

∫ ∞

0
e−(r +κ j +λD+λT +λl )s p j (s)ds

−κ j
∫ ∞

0
e−(r +κ j +λD+λT +λl )s p j (s + t)ds −

λD(1 − f )F + λT F

r + κ j + λD + λT
.

To obtain the relationship betweenq j (t) and p j (t), we rewrite

p j (t) − q j (t) = κ j e(r +κ j +λD+λT +λl )t
∫ ∞

t
e−(r +κ j +λD+λT +λl )s p j (s)ds

+
κ j λl

r + κ j + λD + λT

∫ ∞

0
e−(r +κ j +λD+λT +λl )s p j (s)ds +

λD(1 − f )F + λT F

r + κ j + λD + λT

anddifferentiate f (t) := p j (t) − q j (t) with respect tot to obtain

(r + λl + λD + λT ) f (t) −
�
f (t) = κ j q j (t)

+
(r + κ j + λD + λT + λl )κ

j λl

r + κ j + λD + λT

∫ ∞

0
e−(r +κ j +λD+λT +λl )s p j (s)ds

+
r + κ j + λD + λT + λl

r + κ j + λD + λT

(
λD(1 − f )F + λT F

)
.

Integrating this forward yields

p j (t) = q j (t) +
∫ ∞

t
e−(r +λD+λT +λl )(s−t)κ j q j (s)ds (59)

+
(r + κ j + λD + λT + λl )

(r + κ j + λD + λT )(r + λD + λT + λl )
[κ j λl z

j + λD(1 − f )F + λT F ]

= q j (t) +
∫ ∞

t
e−(r +λD+λT +λl )(s−t)

×
[
κ j q j (s) +

r + κ j + λD + λT + λl

r + κ j + λD + λT
[κ j λl z

j + λD(1 − f )F + λT F ]
]
ds,
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where

zj =
∫ ∞

0
e−(r +κ j +λD+λT +λl )u p j (u)du.

We use (59) to rewrite

p j (t) = q j (t) + e−(r +λD+λT +λl )(tu−t)[ p j (tu) − q j (tu)] +
∫ tu

t
e−(r +λD+λT +λl )(s−t)

×
[
κ j q j (s) +

r + κ j + λD + λT + λl

r + κ j + λD + λT
[κ j λl z

j + λD(1 − f )F + λT F ]
]
ds

(60)

for anytu ≥ t .
We now find the prices prevailing in steady state (the price prevailing ast → ∞ in absence

of aggregate liquidity shocks). In the notation, dependence on time is ignored because we are
looking at steady-state quantities. In steady state, the interdealer price is constant and the same for
all investors, so (58) gives us

q j =
( r + λD + λT + λl

r + κ j + λD + λT + λl

)
p −

κ j λl z
j + λD(1 − f )F + λT F

r + κ j + λD + λT
.

Using(58), we have

U j
i (1) − q j =

( C

r + κ j + λD + λT
− δ

π2λ + 1{i =2}(κ
j + r + λD + λT ) + λl

(r + κ j + λD + λT )(r + κ j + λ + λD + λT + λl )

)

−
[( r + λD + λT + λl

r + κ j + λD + λT + λl

)
p −

κ j λl

r + κ j + λD + λT
zj −

λD(1 − f )F + λT F

r + κ j + λD + λT

]
.

Assumethat the marginal buyer in steady state is a high investor with the lowest search intensity

(i = 1, j = 1). This impliesthatU
1
1(1) − q1 = 0, and the interdealer price is given as

pss =
r + κ1 + λD + λT + λl

r + λD + λT + λl

[C + λD(1 − f )F + λT F

r + κ1 + λD + λT
+

κ1λl

r + κ1 + λD + λT
z1

−δ
π2λ + λl

(r + κ1 + λD + λT )(r + κ1 + λ + λD + λT + λl )

]
. (61)

Thebuy price is given asp + z(U j
1 (1) − q j ), and the sell price isp + z(U j

2 (1) − q j ). Assume
now that as in the previous section, all high investors buy in steady state and all low investors
sell in steady state apart from those with the lowest search intensity (for them, low types sell and
high types both buy and sell). When a shock occurs, markets become integrated at timet2 =
− log(ω)/λ. At any timet < t2, we have for anyj that

q j (t) = U
j
2(1) =

C

r + κ j + λD + λT + λl
− δ

r + κ j + π2λ + λD + λT + λl

(r + κ j + λ + λD + λT + λl )(r + κ j + λD + λT + λl )
,

andthe price at timet after an aggregate liquidity is, according to (60),

p j (t) = q j (t) + e−(r +λD+λT +λl )(t2−t)[ p j (t2) − q j (t2)] +
∫ t2

t
e−(r +λD+λT +λl )(s−t)

×
[
κ j q j (0) +

r + κ j + λD + λT + λl

r + κ j + λD + λT
[κ j λl z

j + λD(1 − f )F + λT F ]
]
ds

= q j (0) + e−(r +λD+λT +λl )(t2−t)[ p(t2) − q j (t2)] +
1 − e−(r +λD+λT +λl )(t2−t)

r + λD + λT + λl

×
[
κ j q j (0) +

r + κ j + λD + λT + λl

r + κ j + λD + λT
[κ j λl z

j + λD(1 − f )F + λT F ]
]
. (62)
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At time t2, markets become integrated and the marginal buyer is a low-typeρ1 investor until time

t2 + t1 with t1 = log(

∑N
j =1 ρ j

ρ1 )/λ. Thereafter, the marginal buyer is a high-typeρ1-investor. So,

q1(t) = U1
2 (1) for t2 ≤ t < t2 + t1 andq1(t) = U1

1 (1) for t ≥ t2 + t1. Insert theseq1’s into (60)
to get

p(t) = U1
2 (1) + e−(r +λD+λT +λl )(t2+t1−t)[ pss − U1

1 (1)] +
∫ t2+t1

t
e−(r +λD+λT +λl )(s−t)

×
[
κ1U1

2 (1) +
r + κ1 + λD + λT + λl

r + κ1 + λD + λT
[κ1λl z

1 + λD(1 − f )F + λT F ]
]
ds

= U1
2 (1) + e−(r +λD+λT +λl )(t2+t1−t)[ pss − U1

1 (1)] +
1 − e−(r +λD+λT +λl )(t2+t1−t)

r + λD + λT + λl

×
[
κ1U1

2 (1) +
r + κ1 + λD + λT + λl

r + κ1 + λD + λT
[κ1λl z

1 + λD(1 − f )F + λT F ]
]

= U1
2 (1) + e−(r +λD+λT +λl )(t2+t1−t)[ pss − U1

1 (1)] +
(
1 − e−(r +λD+λT +λl )(t2+t1−t)

)
C2(κ1, z1)

for t2 ≤ t < t2 + t1, where

C1(κ1, z1) =
κ1λl z

1 + λD(1 − f )F + λT F

r + κ1 + λD + λT

C2(κ1, z1) =
1

r + λD + λT + λl

[
κ1U1

2 (1) + (r + κ1 + λD + λT + λl )C
1(κ1, z1)

]
.

In particular, we have

p(t2) = U1
2 (1) + e−(r +λD+λT +λl )t1[ pss − U1

1 (1)] +
(
1 − e−(r +λD+λT +λl )t1

)
C2(κ1, z1).

Accordingto (58), we have fort2 ≤ t < t2 + t1

q j (t2) = p(t2) − κ j
∫ ∞

0
e−(r +κ j +λT +λD+λl )u p(t2 + u)du − C1(κ j , zj )

= p(t2) − κ j
∫ t1

0
e−(r +κ j +λT +λD+λl )u p(t2 + u)du

−κ j
∫ ∞

t1
e−(r +κ j +λT +λD+λl )u pssdu − C1(κ j , zj ).

Because

∫ t1

0
e−(r +κ j +λT +λD+λl )ue−(r +λD+λT +λl )(t1−u)du

=
e−(r +λD+λT +λl )t1 − e−(r +κ j +λT +λD+λl )t1

κ j
,

calculationsshow that

q j (t2) = p(t2) − κ j [U1
2 (1) + C2(κ1, z1)]

1 − e−(r +κ j +λT +λD+λl )t1

r + κ j + λT + λD + λl

−[ pss − U1
1 (1) − C2(κ1, z1)](e−(r +λD+λT +λl )t1 − e−(r +κ j +λT +λD+λl )t1)

−
κ j pss

r + κ j + λT + λD + λl
e−(r +κ j +λD+λT +λl )t1 − C1(κ j , zj ),
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andtherefore

p(t2) − q j (t2) = κ j [U1
2 (1) + C2(κ1, z1)]

1 − e−(r +κ j +λT +λD+λl )t1

r + κ j + λT + λD + λl

+ [ pss − U1
1 (1) − C2(κ1, z1)](e−(r +λD+λT +λl )t1 − e−(r +κ j +λT +λD+λl )t1)

+
κ j pss

r + κ j + λT + λD + λl
e−(r +κ j +λD+λT +λl )t1 − C1(κ j , zj ). (63)

Plugging(63) andq j (0) = U
j
2(1) into (62) (and settingt = 0) gives the price immediately after

the shock. However, we need to findzj for any j . We have

zj =
∫ ∞

0
e−(r +κ j +λD+λT +λl )s p j (s)ds

=
∫ ∞

t2+t1
e−(r +κ j +λD+λT +λl )s pssds

+
∫ t2+t1

t2
e−(r +κ j +λD+λT +λl )s

×
[
U1

2 (1) + e−(r +λD+λT +λl )(t2+t1−s)[ pss − U1
1 (1)] +

(
1 − e−(r +λD+λT +λl )(t2+t1−s)

)
C2(κ

1, z1)
]
ds

+
∫ t2

0
e−(r +κ j +λD+λT +λl )s

×
[
U j

2 (1) + e−(r +λD+λT +λl )(t2−s)[ p(t2) − q j (t2)] (64)

+
(
1 − e−(r +λD+λT +λl )(t2−s)

) κ j U j
2 (1) + (r + κ j + λD + λT + λl )C1(κ

j , zj )

r + λD + λT + λl

]
ds

=
e−(r +κ j +λD+λT +λl )(t2+t1)

r + κ j + λD + λT + λl
pss +

e−(r +κ j +λD+λT +λl )t2 − e−(r +κ j +λD+λT +λl )(t2+t1)

r + κ j + λD + λT + λl
[U1

2 (1) + C2(κ
1, z1)]

+e−(r +λD+λT +λl )(t2+t1)

∫ t2+t1

t2
e−κ j s[ pss − U1

1 (1) − C2(κ
1, z1)]ds

+
1 − e−(r +κ j +λD+λT +λl )t2

r + κ j + λD + λT + λl

[

U j
2 (1) +

κ j U j
2 (1) + (r + κ j + λD + λT + λl )C1(κ

j , zj )

r + λD + λT + λl

]

+e−(r +λD+λT +λl )t2

∫ t2

0
e−κ j s

[

p(t2) − q j (t2) −
κ j U j

2 (1) + (r + κ j + λD + λT + λl )C1(κ
j , zj )

r + λD + λT + λl

]

ds

=
e−(r +κ j +λD+λT +λl )(t2+t1)

r + κ j + λD + λT + λl
pss +

e−(r +κ j +λD+λT +λl )t2 − e−(r +κ j +λD+λT +λl )(t2+t1)

r + κ j + λD + λT + λl
[U1

2 (1) + C2(κ
1, z1)]

+e−(r +λD+λT +λl )(t2+t1) e−κ j t2 − e−κ j (t2+t1)

κ j
[ pss − U1

1 (1) − C2(κ
1, z1)]

+
1 − e−(r +κ j +λD+λT +λl )t2

r + λD + λT + λl

[
U j

2 (1) + C1(κ
j , zj )

]

+e−(r +λD+λT +λl )t2 1 − e−κ j t2

κ j

[

p(t2) − q j (t2) −
κ j U j

2 (1) + (r + κ j + λD + λT + λl )C1(κ
j , zj )

r + λD + λT + λl

]

.

(65)

We have thatpss is a function ofz1, given in (61), andp(t2)−q j (t2) is a function ofzj andz1 in
(63). If we plug pss and p(t2) − q1(t2) into (65), we can solve forz1. We can then insertz1 into
theexpression forpss. Finally, we can plugp(t2) − q j (t2) into (65) and solve forzj . This gives
us zj for any j , pss, and settingt = 0 in (62) gives us the price immediately after an aggregate
liquidity shock.
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Table 5
IRTs and liquidity shocks versus bid/ask/interdealer transactions

Panel A: IRT vs buy/interdealer/sell

B–S B–D D–S B S D
All 4.0% 19.2% 70.5% 0.2% 5.3% 0.8%
Trade size≤ 10K 3.2% 19.1% 75.8% 0.2% 1.3% 0.5%
10K < tradesize≤ 50K 2.0% 19.3% 76.0% 0.1% 1.9% 0.6%
50K < tradesize≤ 100K 3.1% 19.7% 71.8% 0.1% 4.3% 0.9%
100K < tradesize≤ 500K 5.9% 19.7% 58.0% 0.1% 14.8% 1.5%
500K < tradesize≤ 1,000K 16.9% 18.3% 30.3% 0.4% 32.4% 1.7%
1,000K < tradesize 24.8% 15.6% 21.7% 0.5% 35.6% 1.8%

Panel B: Correlation between price differences and liquidityshocks

Small≤ 100K Small≤ 100K Small≤ 24K
Large≥ 100K Large≥ 1,000K Large≥ 100K

Weekly
Bid 18% 33% 24%
Ask 33% 34% 34%
Monthly
Bid 36% 44% 41%
Ask 57% 42% 62%
Observations
Bid 35,164 39,447 25,338
Ask 49,434 64,722 37,516

The sample period in the paper is October 2004–June 2009. For the subperiod November 2008–June 2009,
TRACE has a bid/ask/interdealer indicator for each transaction. In the subperiod, Panel A shows what percentage
of IRTs are buy-sell, buy-dealer, sell-dealer, sell-sell, buy-buy, interdealer-interdealer transactions. Panel B
shows how estimated liquidity shocks are correlated with the average difference between bid prices of small
and large trades and ask prices of small and large trades. First column uses$100,000in face value as a cutoff
between small and large prices. In the second column, small trades have face value smaller than$100,000,large
trades greater than or equal to$1,000,000,and trades in between are discarded. In the third column, small trades
have face value smaller than$24,000,large trades greater than$100,000,and trades in between are discarded.
This is done both on a monthly (8 months) and a weekly (35 weeks) basis.

Appendix C: Robustness checks

IRTs are implicit measures of round-trip costs, the difference in price between a buy and a sell,
and used because TRACE provides no buy/sell indicators for most of the data sample. For the last
eight months, buy/sell/interdealer indicators are available, and I use this subsample to examine
IRTs closer.

Table5, Panel A, shows the percentage of IRTs that includes a buy and sell transaction, a buy
and interdealer transaction, etc. Overall, 4% of IRTs include a buy and sell, 89.7% include an
interdealer transaction together with an investor buy or sell transaction, and 6.3% include only
sells, buys, or interdealer trades. This evidence suggests that a more appropriate interpretation
of IRTs is that they represent the half-spread, since most IRTs reflect either buy-interdealer or
interdealer-sell transactions. Panel A also shows that the percentage of IRTs representing full
round-trip costs increases in trade size. The increase is accompanied by a corresponding increase
in purely one-sided IRTs (only buys, sells, or interdealer trades), so IRTs are reasonable measures
of the half-spread for both small and large trade sizes.

I assume in the empirical analysis that IRTs represent full round-trip costs. Since half-spread
is a more appropriate interpretation of IRTs, estimated search intensitiesρi ’s are upward biased.
An alternative explanation is that the holding costδ is downward biased, since a higherδ yields
higher bid-ask spreads, as Equation (1) shows. Most importantly, however, the relation between
estimated search intensities of different investors is unlikely to be influenced by the bias in IRT,
since IRTs of different trade sizes have similar biases.
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The identification of liquidity shocks is not affected by the fact that IRTs can be interpreted
as a measure of the half-spread. The following example illustrates this. We can find the size of a
liquidity shock by looking at, say, the “difference-in-bidprice-differences”γ∗, where

γ∗(s) = [B∗(s)S − B∗(s)L ] − [BS − BL ],

whereS denotes “small trader,” L denotes “large trader,”∗ marks prices under a liquidity shock
of size s, and an absence of stars marks prices in equilibrium. Theorem2.3 tells us thatγ∗ is
increasingin s. Assume that we are mistakenly looking at sell transactions for the large trader and
buy for the small trader, so instead ofγ∗ weare investigating

γ∗∗(s) = [B∗(s)S + ωS
∗ (s) − B∗(s)L ] − [BS + ωS − BL ]

= [B∗(s)S − B∗(s)L ] − [BS − BL ] + [ωS
∗ (s) − ωS],

whereωS is the bid-ask spread for a small trader in equilibrium andωS
∗ (s) is the bid-ask spread

under a shock of sizes. According to Theorem2.3,ωS
∗ (s) andωS arethe same, soγ∗ = γ∗∗ for

every s. Therefore, liquidity shocks can be identified by looking at eitherγ∗ or γ∗∗. In fact, any
combination of bid, ask, or interdealer prices of small versus large traders can be used to identify
liquidity shocks.

Liquidity shocks can be identified by looking at either bid or ask prices. To test separately on bid
and ask prices, I do the following. I sort all bid prices in the period November 2008–June 2009 into
small and large bid prices. In this robustness check, I use all available straight coupon bullet bond
prices with a maturity less than 30 years (I have bid/ask indicators and therefore do not need to filter
bid and ask prices out of the data using imputed round-trip trades). For robustness, I use three dif-
ferent cutoffs between small and large prices. Trade size of $100,000 to distinguish between insti-
tutional and retail investors is one cutoff, prices smaller than $100,000 and larger than $1,000,000
is another (throwing in-between prices away), and prices smaller than $24,000 (median trade size)
and larger than $100,000 is a third (throwing in-between prices away). For a given bond on a given
day, if I have both a small and a large bid, I have an observation of the difference in bids (if I have
several small respectively large bids, I take the average). I average all the differences in bids during
a month to get a monthly average and find the correlation between monthly averages and estimated
monthly liquidity shocks. I repeat this for ask prices to get a correlation between monthly average
ask differences and liquidity shocks. Finally, I repeat this exercise on a weekly basis to provide a
further robustness check. Panel B in Table5 shows the results. Across different specifications,
average correlation between estimated liquidity shocks and bid differences is 40%, while the
corresponding average correlation is 52% for ask differences. Thus, differences in prices of small
versus large trades, whether it is bid or ask prices, are correlated with estimated liquidity shocks.
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Dick-Nielsen, J., P. Feldḧutter, and D. Lando. Forthcoming. Corporate Bond Liquidity Before and After the
Onset of the Subprime Crisis.Journal of Financial Economics.

Duffie, D. 2010. Asset Price Dynamics with Slow-moving Capital.Presidential Address to the American Finance
Association.
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