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This paper examines the ability of three-factor a±ne term structure models with
essentially, extended, and semi-a±ne risk premium speci¯cations to capture the
dynamics of bond excess returns, yield volatility and higher order moments in yields.
Extended a±ne models can best capture the time-variation in excess returns and
yield volatility simultaneous. However, none of the three-factor models can fully
match bond return predictability and yield volatility jointly. Extended a±ne models
are more restricted in the ability to price bonds because of necessary parameter
restrictions ��� the so-called Feller condition ��� and essentially a±ne and semi-a±ne
models are therefore better suited for pricing purposes.
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1. Introduction

Empirical evidence suggests that risk premia and volatility in US interest

rates are time-varying. The excess return on a bond is documented by among

others Campbell and Shiller (1991) to be time-varying and positively related

to the slope of the yield curve. It is also documented that volatility of yields is

time-varying and positively related to the level of yields. Du®ee (2002) and

Dai and Singleton (2002) ¯nd that standard a±ne term structure models
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with Du®ee (2002)'s essentially a±ne risk premium speci¯cation can ¯t one of

these empirical facts but have di±culty in ¯tting both.

I examine whether the tension between ¯tting the ¯rst and second con-

ditional moments is less pronounced in extended a±ne models proposed

by Cheridito et al. (2007) and semi-a±ne models proposed by Duarte (2004).

I investigate models with exactly three latent factors. The reason for choosing

three factors is that Litterman and Scheinkman (1991) show that three

factors explain almost all the variation in the yield curve while Du®ee (2010)

shows that Sharpe ratios in a±ne models with more than three factors are

\astronomically high".

Using Campbell and Shiller (1991) regression coe±cients as a benchmark, I

show that extended models capture risk premia better than essentially and

semi-a±ne models. Although none of the models with stochastic volatility

match a purely Gaussian model, extended models with stochastic volatility

outperform their essentially and semi-a±ne counterparts and the di®erence

increases with the number of volatility factors. In essentially a±ne models,

the ability to capture time-varying risk premia decreases strongly with the

number of volatility factors but in extended models the ability is similar

across models with one, two, and three volatility factors and all three ex-

tended models do as well or better than the essentially a±ne model with one

volatility factor (A1ð3Þ model). Although semi-a±ne models nest essentially

a±ne models, the added °exibility does not help in capturing risk premia.

The level e®ect in volatility is documented by among others Chapman and

Pearson (2001) and this e®ect can be measured by regressing squared yield

changes on the level, slope, and curvature of the yield curve and ¯nding a

positive and highly signi¯cant coe±cient on the level of the yield curve. All

models predict a positive level e®ect but none of the models capture the

magnitude of the e®ect or simultaneously match the correct sign on the slope

and curvature coe±cients. Brandt and Chapman (2003) conclude that qua-

dratic term structure models perform better than essentially a±ne models

and point to these regression results as the most important factor in the

di®erence of ¯t. Comparing model-implied volatility with historical volatility

I show that none of the models capture the high volatility during the Fed

experiment in 1979–1982, but apart from this period the broad trends in

volatility are matched. Also, the A1ð3Þ extended and essentially a±ne models

largely match the size and sign of the level, slope, and curvature coe±cients

for the subperiods before and after the Fed experiment leading to the con-

clusion that the A1ð3Þ models capture the dynamics of volatility slightly

better in these subperiods. I also document a tension in essentially and
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extended a±ne models between ¯tting yields in both the time series and cross

section. The distribution of yields in extended models is more in accordance

with the historical distribution than in essentially a±ne models: skewness and

kurtosis of yields in extended models are closer to historical skewness and

kurtosis. The intuition behind this result is clear when examining the A1ð3Þ
model. Empirically, skewness and kurtosis of yields depend largely on a single

parameter and while this parameter is shared by the actual and risk-neutral

dynamics in the essentially a±ne A1ð3Þ model it is allowed to take di®erent

values under the two measures in the extended counterpart. In the essentially

a±ne model, the historical distribution of long yields \inherits" a skewed

and fat-tailed distribution from the risk-neutral distribution, while in the

extended model skewness and kurtosis can di®er such that the historical

distribution is better captured.

While the distribution of yields in extended models is more in accordance

with the historical distribution, I show that extendedmodels are less successful

in ¯tting the cross section of yields. The reason is that extended models are

only well de¯ned if additional restrictions are imposed in the model, namely

the so-called Feller restrictions which will be described in detail later. These

restrictions limit the possible yield curve shapes that extended models can

generate and the restrictions are binding. Therefore, the cross-sectional ¯t in

extended models is worse than in essentially a±ne models.

The semi-a±ne models of Duarte (2004) solve the tension in ¯tting both

the time series and cross-sectional properties of yields. The semi-a±ne models

(1) have the ability to ¯t the higher order moments of yields under the

historical measure, (2) have the ability to generate a wide variety of yield

curve shapes under the risk-neutral measure, and (3) have the same degree of

predictability as essentially a±ne models. Thus, the added parameters in

semi-a±ne models improve their ¯t relative to essentially a±ne models, but

at the cost of non-a±ne dynamics of the factors under the actual measure.

Finally, the results show that the unconditional mean of yields is hard to

pin down with reasonable precision. For example, the average ¯ve-year yield

is 6.19% while the 95% con¯dence band in the essentially a±neA1ð3Þmodel is

½2:84%; 40:90%�. Thus, the average yield curve is not a moment that is useful

to statistically discriminate between models.

The paper is organized as follows. Section 2 describes the features in the

US term structure that a±ne models should match. The a±ne framework is

setup in Sec. 3 and the estimation methodology Markov Chain Monte Carlo

(MCMC) is explained in Sec. 4. The ¯t of essentially, extended, and semi-

a±ne three-factor a±ne models is examined in Sec. 5 and Sec. 6 concludes.
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2. Features of the US Term Structure

I compare three-factor a±ne term structure models across a set of US term

structure \features" that are easily interpretable and has proven di±cult for

term structure models to match. Earlier studies have used these features to

compare completely a±ne, essentially a±ne, and/or quadratic term structure

models.

The data are month-end (continuously compounded) 1, 2, 3, 4, and 5 years

zero-coupon yields for the period 1952:6 to 2004:12 extracted from US

Treasury security prices by the method of Fama and Bliss (1987). The data

are from the Center for Research in Security Prices (CRSP) and are used

both in this section to illustrate the US term structure features and in the

later estimation of a±ne models. Below, I describe the moments in the data

across which I compare a±ne models.

Expected excess returns are time-varying and positively related to the slope

of the yield curve.

Expected excess returns in US Treasury bonds vary across time and ma-

turity. Fama (1984) and Campbell and Shiller (1991) show that expected

excess returns are positively related to the slope of the yield curve and the

e®ect increases with the maturity of the bond. Since their seminal papers a

number of other factors predicting excess returns have been documented (see

for example Cochrane and Piazzesi (2005), Ludvigson and Ng (2009), Cooper

and Priestley (2009), Joslin et al. (2014), and Cieslak and Povala (2015)), but

I use the slope of the yield curve as a test because Dai and Singleton (2002)

show that it is a hard test for a±ne models and because this predictor has

passed the test of time and shown to be a consistent predictor of excess

returns.1

Campbell and Shiller (1991) run the regression

Y ðt þ 1;n � 1Þ � Y ðt;nÞ ¼ constþ �n

Y ðt;nÞ � Y ðt; 1Þ
n � 1

� �
þ res; ð1Þ

where Y ðt; nÞ is the n-year zero-coupon yield at time t and the coe±cients are

given in Panel B in Table 1. With constant risk premia the expectation theory

predicts that �n is equal to one for all maturities, but the actual coe±cients

are negative and increasingly so with maturity.

1See Du®ee (2012) for a discussion of the out-of-sample properties of several of the recently
documented factors.
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Volatilities of yields are time-varying and positively related to the level of

yields.

Brandt and Chapman (2003), Piazzesi (2010), and Jacobs and Karoui

(2009) document that yield volatility is time-varying and positively corre-

lated with interest rates. To see this, Panel C in Table 1 shows the results

from regressing squared monthly yield changes on the level, slope, and cur-

vature of the yield curve ��� the three components identi¯ed by Litterman

and Scheinkman (1991) that explain most return variability across the ma-

turity spectrum. The level factor is strongly signi¯cant across all maturities

con¯rming that yield volatility is related to the level of yields. The table also

shows that the relation between volatility and curvature is positive (although

mostly insigni¯cant). This is consistent with Christiansen and Lund (2005)

who argue that curvature measures the cost of convexity and this cost is

high when volatility is high. Finally, the table shows an insigni¯cant but

mostly negative relation between slope and volatility. This is slightly

Table 1. Yield Curve Statistics. Panel A shows the unconditional mean, skewness, and
kurtosis of yields along with the volatility (standard deviation) of monthly yield changes for
maturities 1, 2, 3, 4, and 5 year. The mean is given in percent while the volatility is measured
in basis points. Panel B shows the slope coe±cients from the regressions Y ðt þ 1; n � 1Þ �
Y ðt; nÞ ¼ constþ �n ½Y ðt;nÞ�Y ðt;1Þ

n�1 � þ residual where n and t are measured in years. Panel C

shows the coe±cents from the regressions ½Y ðt þ 1; nÞ � Y ðt; nÞ�2 ¼ constþ �nð1Þ½Y ðt; 5Þ�þ
�nð2Þ½Y ðt; 5Þ � Y ðt; 1Þ� þ �nð3Þ½Y ðt; 5Þ þ Y ðt; 1Þ � 2Y ðt; 3Þ� þ residual where t is measured
in months, n in years, and Y in percent. In parenthesis are shown Hansen and Hodrick (1980)
standard errors and a signi¯cant di®erence from 1 at the 5%, 1%, or 0.1% level is denoted
by �; ��; or � � �. Source: Fama and Bliss (1987) monthly observations from 1952:6 to 2004:12.

n 1 2 3 4 5

Panel A: Unconditional moments of the yield curve
Mean 5.60 5.81 5.98 6.11 6.19
Yield change volatility 49.3 43.2 40.1 38.8 36.2
Skewness 0.83 0.79 0.78 0.77 0.77
Excess kurtosis 0.77 0.57 0.51 0.44 0.35

Panel B: Campbell–Shiller
�n �0.775�� �1.1311��� �1.5198��� �1.4941���

Standard error (0.546) (0.637) (0.683) (0.745)

Panel C: Volatility regression
Level 0.1095��� 0.0713��� 0.0565��� 0.0519��� 0.0438���

(0.0202) (0.0132) (0.0102) (0.0075) (0.0058)
Slope �0.1415 �0.0785 �0.0316 �0.0196 0.0156

(0.0960) (0.0631) (0.0479) (0.0362) (0.0286)
Curvature 0.2712 0.1082 0.1657 0.0776 0.1262�

(0.1968) (0.1304) (0.0974) (0.0755) (0.0603)
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surprising since the slope of the yield curve depends on the risk premium for

the long-maturity bond and if the risk premium depends on volatility a

positive relationship is expected. As discussed in Sec. 5.2, however, the neg-

ative regression coe±cients are due to the combination of high volatility and

on average inverted yield curves during the Fed experiment 1979–1982 (see

also Christiansen and Lund (2005)).

The yield curve is upward sloping on average

A basic feature of the US term structure is that it is upward sloping on

average: Panel A in Table 1 shows that for our sample period the ¯ve-year

yield is 59 basis points higher than the one-year yield. The ¯ve-year yield is

higher than the one-year yield in 79% of the months.

Volatility of yield changes is downward sloping on average

In contrast to the unconditional mean of yields, the unconditional vola-

tility ��� de¯ned as standard deviation ��� of yield changes is decreasing with

maturity. Panel A in Table 1 shows that the monthly volatility decreases

from 49.3 basis points for the one-year yield to 36.2 basis points for the ¯ve-

year yield. This phenomenon is not consistent for short maturities over dif-

ferent time periods since the volatility curve is hump-shaped when using data

only from the Greenspan era 1987:8–2004:12 but it is consistent for maturity

2–3 years and more.2 However, for the sample period used in this paper, the

volatility curve is downward-sloping for all maturities.

The distributions of yields are skewed and leptokurtic

While the ¯rst two moments of yields have received considerable attention

in the literature, higher order moments are less studied.3 In Panel A in Table 1

we see that the distributions of yields are skewed and leptokurtic since

skewness and excess kurtosis are positive for all maturities.

3. A±ne Term Structure Models

In this section, I describe a±ne term structure models. I ¯rst describe the

dynamics of the short rate under the risk neutral measure and thereafter risk

premium speci¯cations. Di®erent speci¯cations lead to di®erent model classes

and their implications for the risk neutral dynamics are discussed.

2See Piazzesi (2005) for a detailed discussion.
3See Dutta and Babbel (2002) for a study of skewness and kurtosis in yields.
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3.1. Bond pricing

The short rate rt is an a±ne vector of unobserved state variables Xt ¼
ðX 1

t ; . . . ;X
N
t Þ0,

rt ¼ �0 þ � 0xXt; ð2Þ
and Xt follows an a±ne di®usion,

dXt ¼ ðK Q
0 �K Q

1 XtÞdt þ �
ffiffiffiffiffi
St

p
dW Q

t ; ð3Þ
where W Q

t is an N -dimensional standard Brownian motion under Q, K Q
0 is a

vector of length N while K Q
1 , �, and St are N �N matrices. St is a diagonal

matrix with elements ½St �ii ¼ �i þ � 0
iXt, where �i is a scalar while �i is an

N -vector. Dai and Singleton (2000) rank models according to the number of

state variables entering the volatility matrix St and de¯ne an N -factor model

with m � N variables entering volatility as an AnðNÞ model. Parameter

restrictions ensuring that the dynamics of Xt are well-de¯ned are given in Dai

and Singleton (2000).

Du±e and Kan (1996) show that bond prices are exponential-a±ne

Pðt; �Þ ¼ eA
�ð�Þ�B �ð�Þ 0Xt ;

where Pðt; �Þ denotes the price of a zero coupon bond at time t that matures

at time t þ � and the functions A�ð�Þ and B �ð�Þ solve the ODEs

dA�ð�Þ
d�

¼ �K Q 0
0 B �ð�Þ þ 1

2

XN
i¼1

½� 0B �ð�Þ�2i�i � �0; ð4Þ

dB �ð�Þ
d�

¼ �K Q 0
1 B �ð�Þ � 1

2

XN
i¼1

½� 0B �ð�Þ�2i �i þ �x : ð5Þ

The corresponding (continuously compounded) yield of bond Pðt; �Þ is
Y ðt; �Þ ¼ Að�Þ þ Bð�ÞXt ;

where Að�Þ ¼ �A �ð�Þ
� and Bð�Þ ¼ B �ð�Þ 0

� .

I adopt the normalizations in the canonical form of Dai and Singleton

(2000) and a thorough description and discussion of restrictions for all three-

factor models are given in Appendix A.

3.2. Risk premia

The stochastic discount factor M can be written as

dMt

Mt

¼ �rtdt � � 0
tdW

P
t ;

Can Affine Models Match the Moments in Bond Yields?

1650009-7

Q
ua

rt
. J

. o
f 

Fi
n.

 D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 D
r 

Pe
te

r 
Fe

ld
hu

tte
r 

on
 0

3/
25

/1
6.

 F
or

 p
er

so
na

l u
se

 o
nl

y.



where Wt is a Brownian motion under the actual measure P. The dynamics

of Xt under P is given as

dXt ¼ ðK Q
0 �K Q

1 XtÞdt þ �S
1
2
t �tdt þ �S

1
2
t dW

P
t

and Dai and Singleton (2000) choose the completely a±nemarket price of risk

as

S
1
2
t �t ¼ St�1

and all variation in the price of risk vector is then due to variation in St .

Du®ee (2002) proposes an essentially a±ne market price of risk

S
1
2
t �t ¼ St�1 þ I ��2Xt; ð6Þ

where I � is an N � N diagonal matrix with I �
ii ¼ 1finfð�iþ� 0

iXtÞ>0g and �2 is a

N � N matrix. The essentially a±ne market price of risk nests the completely

a±ne and extends the °exibility of the price of risk of the N �m non-

volatility factors.

Cheridito et al. (2007) propose an extended a±ne price of risk

S
1
2
t �t ¼ �1 þ �2Xt; ð7Þ

where �1 is an N -vector and �2 is an N � N matrix that possibly has

restrictions ensuring that the process X is well de¯ned under P. Compared to

essentially a±ne models their speci¯cation adds °exibility to the price of risk

of them volatility factors without restricting the °exibility in the price of risk

of the N �m non-volatility factors. However, the °exibility comes at a cost.

To avoid arbitrage opportunities the volatility matrix St must be strictly

positive and therefore the parameter vector has to satisfy the multivariate

generalization of the Feller condition. Appendix A explains the parametri-

zation of all three-factor essentially and extended a±ne models in detail.

To describe the connection between the Feller condition and the risk pre-

mium speci¯cation in a simple setting, we can look at the one-dimensional case.

The short rate dynamics in the Cox–Ingersoll–Ross model which corresponds

to the A1ð1Þ model in Dai and Singleton (2000) is given as

drt ¼ ð�0 þ �1rtÞdt þ �
ffiffiffiffi
rt

p
dW Q

t

under the risk neutral measure. The essentially and completely a±ne A1ð3Þ
risk premium is de¯ned as

�t ¼ �2
ffiffiffiffi
rt

p

P. Feldhütter
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and the dynamics of the short rate under the historical measure is

drt ¼ ð�0 þ ð�1 þ ��2ÞrtÞdt þ �
ffiffiffiffi
rt

p
dW p

t :

We see that only the mean reversion coe±cient in the drift is allowed

to be di®erent under the two measure. The extended a±ne A1ð1Þ risk

premium is

�t ¼
�1ffiffiffiffi
rt

p þ �2
ffiffiffiffi
rt

p

and the historical short rate dynamics is

drt ¼ ðð�0 þ ��1Þ þ ð�1 þ ��2ÞrtÞdt þ �
ffiffiffiffi
rt

p
dW p

t :

We see that both coe±cients in the drift are allowed to be di®erent under

the two measures. However, the risk premium is not well de¯ned if rt is zero

and the Feller condition which ensures that rt stays away from zero needs

to be imposed under both measures. In this example, the Feller condition is

�0 >
� 2

2 under the risk neutral measure and �0 þ ��1 >
� 2

2 under the his-

torical measure. Since the essentially a±ne model allows distributions

under both measures for which the Feller condition is not satis¯ed, the

extended model does not nest the essentially a±ne model. As we shall see

later this restriction is binding under the risk neutral measure.

As illustrated in the one-factor example extended a±ne models has a more

°exible risk premium speci¯cation but do not nest neither essentially nor

completely a±ne models. Also, from a general equilibrium perspective the

extended a±ne risk premium speci¯cation might be di±cult to justify since

agents in the economy become extremely averse to risk in periods where the

risk is minimal. This is a consequence of the market price of risk being in-

versely related to the volatility of the state variables.

Finally, Duarte (2004) adds a constant term to the risk premium of es-

sentially a±ne models given in Eq. (6) such that a non-linear term appears

in the drift under P and names the models semi-a±ne. The risk premium is

S
1
2
t �t ¼ S

1
2
t �0 þ St�1 þ I ��2Xt ; ð8Þ

where �0 is a N � 1 vector. The extra term in semi-a±ne models potentially

increases the °exibility of essentially a±ne models to better capture the

historical distribution of yields while allowing strongly skewed distributions

under the risk-neutral measure in contrast to extended models.

In contrast to extended models, semi-a±ne models nest the essentially

a±ne models because the Feller condition is not imposed which in turn

Can Affine Models Match the Moments in Bond Yields?
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implies that semi-a±ne models are more °exible in generating a variety of

distributions. Also, from a general equilibrium perspective the risk premium

speci¯cation in semi-a±ne models seems more natural than in extended a±ne

models since the price of risk is bounded as risk goes to zero in contrast to

extended a±ne models where the price of risk explodes.

4. Estimation

In estimation, I adopt a Bayesian approach and estimate the models by

MCMC as proposed by Eraker (2001).4 The approach has several advantages

which are useful for the following analysis. First, every yield can be observed

with error. Often, it is assumed that yields or a linear combination of yields

are observed without error such that state variables can be extracted from

yields.5 Second, the main interest in the analysis is whether the models can

capture the size and sign of certain regression coe±cients obtained by running

the regressions on the actual data. MCMC facilitates the construction of the

marginal density of any function of the parameters and state variables and

therefore the marginal density of any regression coe±cient of interest can be

obtained taking into account uncertainty about parameters and state vari-

ables. Third, a non-linear drift of the state variables under the historical

measure does not complicate the estimation. Finally, MCMC can easily

handle parameter restrictions, while optimization algorithms of traditional

frequentist methods often perform poorly in the presence of hard parameter

constraints.6

4.1. Estimation methodology

At time t ¼ 1; . . . ;T , k yields are observed and they are stacked in the

k-vector Yt ¼ ðY ðt; �1Þ; . . . ;Y ðt; �kÞÞ0. The yields are all observed with a

measurement error

Yt ¼ Aþ BXt þ 	t ;

4For a general introduction to MCMC see Robert and Casella (2004) and for a survey of
MCMC methods in ¯nancial econometrics see Johannes and Polson (2009). Examples of
estimating a±ne term structure models in a single-factor setting are Mikkelsen (2001) and
Sanford and Martin (2005) while multi-factor examples are Lamoureux and Witte (2002) and
Bester (2004).
5See for example Dai and Singleton (2002), Du®ee (2002), Cheridito et al. (2007), Almeida
et al. (2011), Joslin et al. (2011), and Hamilton and Wu (2012).
6See for example Cheridito et al. (2007).
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where A is a k-vector and B a k �N matrix. I assume that the measurement

errors are independent and normally distributed with zero mean and common

variance such that

	t � Nð0;DÞ; D ¼ �2Ik:

The parameters of the model and the variances of the measurement errors

are stacked in the vector � ¼ ðK Q
0 ;K

Q
1 ; �; �; �;DÞ. In the estimation, the

latent variables ðXtÞ are treated as parameters but for clarity they are

separated in the vector X .

I am interested in samples from the target distribution pð�;X jY Þ. The
Hammersley–Cli®ord Theorem (Hammersley and Cli®ord, 1970; Besag,

1974) implies that samples are obtained from the target distribution by

sampling from the full conditionals

pðK Q
0 jK Q

1 ; �; �; �;D;X ;Y Þ
pðK Q

1 jK Q
0 ; �; �; �;D;X ;Y Þ

..

.

pðX jK Q
0 ;K

Q
1 ; �; �; �;D;Y Þ

so MCMC solves the problem of simulating from the complicated target

distribution by simulating from simpler conditional distributions. Speci¯-

cally, draw i þ 1 of the parameters ðK Q
0 ;K

Q
1 ; �; �; �;D;XÞ in the MCMC

algorithm is obtained by drawing from the full conditionals

pðK Q
0 j ðK Q

1 Þi; �i; �i; �i;Di;Xi;Y Þ
pðK Q

1 j ðK Q
0 Þiþ1; �i; �i; �i;Di;Xi;Y Þ

..

.

pðX j ðK Q
0 Þiþ1; ðK Q

1 Þiþ1; �iþ1; �iþ1; �iþ1;Diþ1;Y Þ:

If one samples directly from a full conditional, the resulting algorithm is the

Gibbs sampler (Geman and Geman, 1984). If it is not possible to sample

directly from the full conditional distribution one can sample by using

the Metropolis–Hastings algorithm (Metropolis et al., 1953). I use a hybrid

MCMC algorithm that combines the two since not all the conditional

distributions are known.
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4.1.1. The conditionals pðX j�Þ and pðY j�;XÞ
The conditional pðX j�Þ is used in several steps of the MCMC procedure and

is calculated as

pðX j�Þ ¼
YT
t¼1

pðXt jXt�1;�Þ
 !

pðX0Þ:

The continuous-time speci¯cation in (3) is approximated using an Euler

scheme (letting � ¼ IN )
7

Xtþ1 ¼ Xt þ 
P
t �t þ

ffiffiffiffiffiffiffiffiffiffi
�tSt

p
	tþ1;

	tþ1 � Nð0; IN Þ;
where �t is the time between two observations and 
P

t ¼ K Q
0 �K Q

1 Xt þ
S

1
2
t �t is the drift under P. Since St is diagonal

pðX j�Þ /
YN
i¼1

YT
t¼1

½St�1��
1
2

ii

" #
exp � 1

2�t

XT
t¼1

½�Xt � 
P
t�1�t�2i

½St�1�ii

 ! !
pðX0Þ:

If the di®erence between the actual yields and the model implied yields at

time t is denoted by êt ¼ Yt � ðAð�Þ þ Bð�ÞXtÞ, the density pðY j�;XÞ can
be written as

pðY j�;XÞ /
Yk
i¼1

D
� T

2
ii exp � 1

2Dii

XT
t¼1

ê 2
t;i

 ! !

/ ��kT exp � 1

2�2

XT
t¼1

ê 0
t êt

 !
:

4.1.2. The hybrid MCMC algorithm

According to Bayes' theorem the conditional of the risk premium parameters

is given as

pð� j�n�;X ;Y Þ / pðY j�;XÞpð� j�n�;XÞ
/ pðX j�Þpð� j�n�Þ;

7The Euler scheme introduces some discretization error which may induce bias in the pa-
rameter estimates. This possible bias can be reduced using Tanner and Wong (1987)s data
augmentation scheme. However, Bester (2004), using also monthly yield data, report that data
augmentation does not signi¯cantly a®ect parameter estimates. For the e®ect of data aug-
mentation in a one-factor model see Sanford and Martin (2005).
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where �n� denotes the parameter vector without the parameter � and it is

used that pðY j�;XÞ does not depend on �. I assume that the priors are

a priori independent and in order to let the data dominate the results a

standard di®use, non-informative prior, is adopted so pð� j�n�;X ;Y Þ /
pðX j�Þ and the �'s can be Gibbs sampled one column at a time from a

multivariate normal distribution.

The conditional of the variance of the measurement errors is given as

pðD j�nD;X ;Y Þ / pðY j�;XÞpðD j�nD;XÞ
/ pðY j�;XÞpðX j�ÞpðD j�nDÞ
/ pðY j�;XÞ

since pðX j�Þ does not depend on D. �2 can therefore be Gibbs sampled from

the inverse Wishart distribution, �2 � IW ðPT
t¼1 ê

0
t êt; kTÞ.8

The conditional of the other model parameters is given as

pð�j j�n�j
;X ;Y Þ / pðY j�;XÞpð�j j�n�j

;XÞ
/ pðY j�;XÞpðX j�Þpð�j j�n�j

Þ
/ pðY j�;XÞpðX j�Þ;

which for none of the parameters K Q
0 ;K

Q
1 ; �; and � is a known distribution.

To sample the four sets of parameters, I use the Random Walk Metropolis-

Hastings algorithm (RW-MH). To sample �j at MCMC step i þ 1, I pro-

pose � iþ1
j by drawing a normal distributed variable centered around � i

j

and accept it with probability minð1; f ð�
iþ1
j Þ

f ð� i
jÞ
Þ where f is the density

pð�j j�n�j
;X ;Y Þ.

The latent processes are sampled by sampling Xt; t ¼ 0; . . . ;T one at a

time using the RW-MH procedure. For t ¼ 1; . . . ;T � 1 the conditional of Xt

is given as

pðXt jXnt;�;Y Þ / pðXt jXt�1;Xtþ1;�;YtÞ
/ pðYt jXt;�ÞpðXt jXt�1;Xtþ1;�Þ
/ pðYt jXt;�ÞpðXt jXt�1;�ÞpðXtþ1 jXt;�Þ:

For t ¼ 0 the conditional is

pðX0 jX1;�;Y Þ / pðX1 jX0;�;Y ÞpðX0Þ
/ pðX1 jX0;�ÞpðX0Þ;

8Equivalent to an inverted gamma distribution.
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while for t ¼ T the conditional is

pðXT jXnXT
;�;Y Þ / pðXT jXT�1;�;Y Þ

/ pðYT jXT ;XT�1;�;YnYT
ÞpðXT jXT�1;�;YnYT

Þ
/ pðYT jXT ;�ÞpðXT jXT�1;�Þ:

Both the parameters and the latent processes are subject to constraints and

if a draw is violating a constraint it can simply be discarded (Gelfand et al.,

1992). However, I use RW-MH to sample the risk premium parameters in

extended a±ne models since practically all the draws would otherwise be

discarded due to the non-attainment parameter constraints. In estimating

each model I use an algorithm calibration period of eight million draws,

where the variances of the normal proposal distributions are set, a burn-in

period of two million draws and an estimation period of four million draws.

I keep every 200th draw in the estimation period which leaves 20,000 draws,

and parameter estimates are based on the mean of the draws. Further

implementation details are given in Appendix B.1.

5. Results

Parameter estimates are given in Tables 2–7. I do not interpret individual

parameters in the models because the main interest is on the economic

implications of the models.

Table 2. Model estimates, essentially a±ne models (part 1). This table shows parameter
estimates along with con¯dence bands for all three-factor essentially a±ne models.

A0ð3Þ A1ð3Þ ess A2ð3Þ ess A3ð3Þ ess

K Q
1 ð1; 1Þ 0.6250 0.0318 1.1323 0.2357

(0.5344; 0.7075) (0.0100; 0.0550) (0.9843; 1.2964) (0.1987; 0.2850)

K Q
1 ð1; 2Þ 0 0 �0.0770 �0.0461

(�0.1439; �0.0182) (�0.1067; �0.0026)

K Q
1 ð1; 3Þ 0 0 0 �0.4445

(�0.6668; �0.2844)

K Q
1 ð2; 1Þ 4.6914 3.5617 �0.1634 �0.1661

(4.0994; 5.2303) (3.1709; 3.9545) (�0.2978; �0.0301) (�0.1884; �0.1385)

K Q
1 ð2; 2Þ 8.6864 0.0982 0.0549 0.1590

(8.3999; 9.1701) (0.0107; 0.1700) (0.0222; 0.0978) (0.1355; 0.1894)

K Q
1 ð2; 3Þ 0 4.0489 0 �0.0781

(3.5131; 4.5243) (�0.1988; �0.0011)

K Q
1 ð3; 1Þ 1.5609 1.9465 2.4236 �0.0033

(0.9862; 1.8184) (1.7062; 2.3039) (2.1944; 2.7326) (�0.0117; �0.0001)
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Table 2. (Continued )

A0ð3Þ A1ð3Þ ess A2ð3Þ ess A3ð3Þ ess

K Q
1 ð3; 2Þ 2.8678 �0.0735 �0.2465 �0.2937

(2.2982; 3.3807) (�0.1056; �0.0459) (�0.4159; �0.0620) (�0.3181; �0.2667)

K Q
1 ð3; 3Þ 0.0163 1.0179 0.3566 1.9138

(�0.0002; 0.0355) (0.8830; 1.1557) (0.2945; 0.4368) (1.8115; 1.9833)

K Q
0 ð1Þ 0 0.3741 0.2169 0.7475

(0.1742; 0.5917) (0.0082; 0.6824) (0.3025; 1.2112)

K Q
0 ð2Þ 0 0 0.5095 0.0764

(0.0579; 1.4771) (0.0049; 0.1831)

K Q
0 ð3Þ 0 0 0 0.0427

(0.0011; 0.1596)

�2ð1; 1Þ �0.0580 0.0005 0.1185 0.0998
(�0.4829; 0.3163) (�0.0551; 0.0413) (�0.1091; 0.3513) (0.0300; 0.1652)

�2ð1; 2Þ �0.2414 0 0 0
(�0.7987; 0.2982)

�2ð1; 3Þ 0.0237 0 0 0
(�0.0962; 0.1429)

�2ð2; 1Þ 4.1679 1.7675 0 0
(3.5749; 4.7157) (�4.8665; 8.4713)

�2ð2; 2Þ 6.9890 �0.2431 0.0208 �0.0838
(6.2871; 7.7656) (�0.5787; 0.0709) (�0.0247; 0.0634) (�0.1626; �0.0093)

�2ð2; 3Þ �0.1225 3.0486 0 0
(�0.2451; �0.0023) (0.4158; 5.7882)

�2ð3; 1Þ 1.2327 �1.3007 0.9776 0
(0.6157; 1.7127) (�2.6867; �0.0567) (�0.7547; 2.7431)

�2ð3; 2Þ 2.9864 0.0665 �0.1865 0
(2.1810; 3.7600) (0.0030; 0.1378) (�0.4248; �0.0308)

�2ð3; 3Þ �0.0781 �0.5906 �0.0267 0.0251
(�0.1976; 0.0319) (�1.1165; �0.1028) (�0.2714; 0.2161) (�0.2209; 0.2709)

�2 4.90e� 7 4.93e� 7 5.21e� 7 5.11e� 7

(4.57; 5.24)e� 7 (4.61; 5.28)e� 7 (4.86; 5.59)e� 7 (4.78; 5.48)e� 7

Table 3. Model estimates, essentially a±ne models (part 2). This table shows parameter
estimates along with con¯dence bands for all three-factor essentially a±ne models. The
parameters K P

0 and K P
1 are showed for completeness although they are functions of other

parameters and are not estimated.

A0ð3Þ ess/ext A1ð3Þ ess A2ð3Þ ess A3ð3Þ ess
�1ð1Þ 0.5289 0 0 0

(0.1485; 0.9139)
�1ð2Þ �0.1127 0.3850 0 0

(�0.5192; 0.2938) (�56.14; 55.90)
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Table 3. (Continued )

A0ð3Þ ess/ext A1ð3Þ ess A2ð3Þ ess A3ð3Þ ess
�1ð3Þ 0.2210 �0.2580 0.2958 0

(�0.1697; 0.6163) (�10.90; 10.74) (�2.0638; 2.7795)

�0 0.0790 0.0187 0.0227 0.0112
(0.0762; 0.0826) (0.0184; 0.0191) (0.0218; 0.0236) (0.0100; 0.0124)

�xð1Þ 0.0192 0.0027 0.0071 �0.0014
(0.0134; 0.0282) (0.0025; 0.0029) (0.0052; 0.0089) (�0.0015;�0.0012)

�xð2Þ 0.0684 0.00006 0.0007 0.0030
(0.0637; 0.0750) (0.00004; 0.00008) (0.0006; 0.0010) (0.0028; 0.0033)

�xð3Þ 0.0109 0.00040 0.0030 0.0158
(0.0098; 0.0128) (0.00032; 0.00051) (0.0019; 0.0055) (0.0149; 0.0167)

�2ð1Þ 0 1474.3 0 0
(1155.9; 1833.0)

�3ð1Þ 0 54.1 9.3479 0
(33.4; 77.2) (0.9447; 18.633)

�3ð2Þ 0 0 0.2369 0
(0.0073; 0.9411)

K P
1 ð1; 1Þ 0.6830 0.0312 1.0137 0.1358

(0.3312; 1.0770) (0.0013; 0.0836) (0.7318; 1.2684) (0.0739; 0.2096)

K P
1 ð1; 2Þ 0.2414 0 �0.0770 �0.0461

(�0.2988; 0.7986) (�0.1439; �0.0182) (�0.1067; �0.0026)

K P
1 ð1; 3Þ �0.0237 0 0 �0.4445

(�0.1430; 0.0961) (�0.6668; �0.2844)

K P
1 ð2; 1Þ 0.5235 1.7942 �0.1634 �0.1661

(0.1273; 0.9580) (�4.9003; 8.4018) (�0.2978; �0.0301) (�0.1884; �0.1385)

K P
1 ð2; 2Þ 1.6974 0.3413 0.0342 0.2429

(1.1654; 2.2582) (0.0348; 0.6569) (0.0073; 0.0777) (0.1633; 0.3267)

K P
1 ð2; 3Þ 0.1225 1.0003 0 �0.0781

(0.0022; 0.2450) (�1.6247; 3.6542) (�0.1988; �0.0011)

K P
1 ð3; 1Þ 0.3282 3.2472 1.4461 �0.0033

(�0.0344; 0.6967) (1.9469; 4.7258) (�0.3262; 3.1707) (�0.0117; �0.0001)

K P
1 ð3; 2Þ �0.1186 �0.1400 �0.0601 �0.2937

(�0.6588; 0.4359) (�0.2254; �0.0681) (�0.2725; 0.0882) (�0.3181; �0.2667)

K P
1 ð3; 3Þ 0.0944 1.6085 0.3833 1.8887

(�0.0121; 0.2100) (1.1046; 2.1460) (0.1446; 0.6255) (1.6339; 2.1414)

K P
0 ð1Þ 0.5289 0.3741 0.2169 0.7475

(0.1485; 0.9139) (0.1742; 0.5917) (0.0082; 0.6824) (0.3025; 1.2112)

K P
0 ð2Þ �0.1127 0.3850 0.5095 0.0764

(�0.5192; 0.2938) (�56.1; 55.9) (0.0579; 1.4771) (0.0049; 0.1831)

K P
0 ð3Þ 0.2210 �0.2580 0.2958 0.0427

(�0.1697; 0.6163) (�10.90; 10.74) (�2.0638; 2.7795) (0.0011; 0.1596)
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Table 4. Model estimates, extended a±ne models (part 1). This table shows parameter
estimates along with con¯dence bands for all three-factor essentially a±ne models.

A1ð3Þ ext A2ð3Þ ext A3ð3Þ ext

K Q
1 ð1; 1Þ 0.0393 1.1400 0.2380

(0.0053; 0.0811) (1.0204; 1.2842) (0.1575; 0.3219)

K Q
1 ð1; 2Þ 0 �0.0457 �0.0803

(�0.0752; �0.0218) (�0.2062; �0.0027)

K Q
1 ð1; 3Þ 0 0 �0.0959

(�0.1995; �0.0048)

K Q
1 ð2; 1Þ 0.0950 �0.1713 �0.1115

(0.0313; 0.1209) (�0.3081; �0.0112) (�0.1675; �0.0763)

K Q
1 ð2; 2Þ 0.4465 0.0758 0.2505

(0.3096; 0.5770) (0.0344; 0.1283) (0.1532; 0.4441)

K Q
1 ð2; 3Þ 1.1754 0 �0.0437

(1.0330; 1.3771) (�0.1256; �0.0010)

K Q
1 ð3; 1Þ 0.0235 3.2571 �0.01393

(0.0027; 0.0478) (3.1596; 3.4077) (�0.2492; �0.0495)

K Q
1 ð3; 2Þ �0.1507 �0.3601 �1.5435

(�0.2083; �0.0944) (�0.5204; �0.1801) (�1.8783; �1.2389)

K Q
1 ð3; 3Þ 0.4294 0.3221 1.4639

(0.3313; 0.5361) (0.2517; 0.4396) (1.0538; 1.9630)

K Q
0 ð1Þ 1.2579 0.6003 0.6566

(0.5305; 2.4484) (0.5022; 0.9402) (0.5043; 1.0310)

K Q
0 ð2Þ 0 0.6245 0.5516

(0.5039; 0.8813) (0.5011; 0.6853)

K Q
0 ð3Þ 0 0 1.9349

(0.5268; 4.1132)

�2ð1; 1Þ �0.0326 0.1368 �0.2922
(�0.1089; 0.0402) (�0.2757; 0.5365) (�0.4798; �0.1080)

�2ð1; 2Þ 0 �0.0041 0.0495
(�0.0347; 0.0242) (�0.1520; 0.3744)

�2ð1; 3Þ 0 0 0.4981
(0.1888; 0.8087)

�2ð2; 1Þ 0.0183 1.6225 �0.0679
(�0.0325; 0.0712) (0.3304; 2.9590) (�0.1451; 0.0167)

�2ð2; 2Þ 0.0290 �0.0880 �0.4263
(�0.1770; 0.2240) (�0.1876; 0.0105) (�0.7744; �0.0951)

�2ð2; 3Þ 0.6129 0 0.3264
(0.1223; 1.1497) (0.0933; 0.6674)

�2ð3; 1Þ �0.0819 0.4763 �0.1179
(�0.1365; �0.0223) (�1.9484; 2.9752) (�0.2337; �0.0208)

�2ð3; 2Þ �0.0512 �0.3019 �0.4727
(�0.2929; 0.1936) (�0.5545; �0.0963) (�0.9290; �0.0444)

�2ð3; 3Þ �1.2157 �0.0246 0.5495
(�1.6774; �0.7926) (�0.1969; 0.1468) (0.2107; 0.9574)

�2 5.09e� 7 5.25e� 7 5.20e� 7
(4.70e� 7; 5.54e� 7) (4.90e� 7; 5.63e� 7) (4.84e� 7; 5.58e� 7)
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Table 5. Model estimates, extended a±ne models (part 2). This table shows
parameter estimates along with con¯dence bands for all three-factor essentially
a±ne models. The parameters K P

0 and K P
1 are showed for completeness although

they are functions of other parameters and are not estimated.

A1ð3Þ ext A2ð3Þ ext A3ð3Þ ext
�1ð1Þ 1.0152 0.0753 0.4850

(�0.6526; 2.7914) (�0.1420; 0.3477) (�0.2748; 1.9402)
�1ð2Þ �0.0752 0.3875 0.4729

(�0.7097; 0.5245) (�0.1767; 1.4118) (�0.0291; 1.5230)
�1ð3Þ 0.0364 0.7649 �0.1342

(�0.5922; 0.6914) (�1.8154; 3.4713) (�1.8128; 1.5689)

�0 0.0113 0.0226 0.0017
(0.0078; 0.0149) (0.0198; 0.0239) (�0.0016; 0.0047)

�xð1Þ 0.0024 0.0106 �0.0016
(0.0023; 0.0026) (0.0095; 0.0117) (�0.0021; �0.0012)

�xð2Þ 0.0074 0.0012 0.0016
(0.0066; 0.0083) (0.0007; 0.0015) (0.0010; 0.0024)

�xð3Þ 0.0036 0.0018 0.0043
(0.0022; 0.0053) (0.0014; 0.0025) (0.0032; 0.0058)

�2ð1Þ 0.0550 0 0
(0.0101; 0.1233)

�3ð1Þ 0.0460 17.60 0
(0.0101; 0.1233) (2.31; 41.50)

�3ð2Þ 0 1.846 0
(0.481; 3.798)

K P
1 ð1; 1Þ 0.0719 1.0032 0.5302

(0.0168; 0.1331) (0.6080; 1.4148) (0.3747; 0.6944)

K P
1 ð1; 2Þ 0 �0.0415 �0.1298

(�0.0762; �0.0140) (�0.4398; �0.0039)

K P
1 ð1; 3Þ 0 0 �0.5939

(�0.9026; �0.3109)

K P
1 ð2; 1Þ 0.0767 �1.7937 �0.0436

(0.0201; 0.1313) (�3.1157; �0.5323) (�0.1214; �0.0018)

K P
1 ð2; 2Þ 0.4175 0.1638 0.6768

(0.2358; 0.6045) (0.0749; 0.2606) (0.3098; 1.0599)

K P
1 ð2; 3Þ 0.5625 0 �0.3701

(0.0538; 1.0734) (�0.7065; �0.1287)

K P
1 ð3; 1Þ 0.1054 2.7808 �0.0215

(0.0326; 0.1725) (0.2578; 5.2090) (�0.0746; �0.0005)

K P
1 ð3; 2Þ �0.0994 �0.0583 �1.0708

(�0.3563; 0.1339) (�0.2439; 0.1089) (�1.5926; �0.6526)

K P
1 ð3; 3Þ 1.6451 0.3467 0.9144

(1.2099; 2.1238) (0.1764; 0.5238) (0.5486; 1.3692)

K P
0 ð1Þ 2.2731 0.6757 1.1416

(1.0089; 3.8133) (0.5083; 1.0301) (0.5175; 2.5748)

P. Feldhütter

1650009-18

Q
ua

rt
. J

. o
f 

Fi
n.

 D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 D
r 

Pe
te

r 
Fe

ld
hu

tte
r 

on
 0

3/
25

/1
6.

 F
or

 p
er

so
na

l u
se

 o
nl

y.



Table 5. (Continued )

A1ð3Þ ext A2ð3Þ ext A3ð3Þ ext
K P

0 ð2Þ �0.0752 1.0119 1.0245

(�0.7097; 0.5245) (0.5188; 2.0401) (0.5165; 2.0921)

K P
0 ð3Þ 0.0364 0.7649 1.8007

(�0.5922; 0.6914) (�1.8154; 3.4713) (0.5679; 3.7045)

Table 6. Model estimates, semi-a±ne models (part 1). This table shows parameter estimates
along with con¯dence bands for all three-factor semi-a±ne models.

A1ð3Þ semi A2ð3Þ semi A3ð3Þ semi

K Q
1 ð1; 1Þ 0.0086 1.4202 0.2404

(0.0004; 0.0225) (1.1176; 1.7445) (0.1973; 0.2910)

K Q
1 ð1; 2Þ 0 �0.2215 �0.0627

(�0.3293; �0.1601) (�0.1195; �0.0067)

K Q
1 ð1; 3Þ 0 0 �0.7770

(�0.9932; �0.6401)

K Q
1 ð2; 1Þ 0.3224 �0.1222 �0.1361

(�0.0881; 0.6494) (�0.3498; �0.0044) (�0.1779; �0.1035)

K Q
1 ð2; 2Þ 0.1286 0.0271 0.1824

(0.0093; 0.2277) (0.0045; 0.0610) (0.1523; 0.2289)

K Q
1 ð2; 3Þ 6.2629 0 �0.0383

(5.8798; 6.5914) (�0.1285; �0.0011)

K Q
1 ð3; 1Þ 0.7957 3.7514 �0.0044

(0.6289; 0.9521) (3.4967; 4.0408) (�0.0148; �0.0001)

K Q
1 ð3; 2Þ �0.0618 �0.6462 �0.4413

(�0.0760; �0.0514) (�0.7262; �0.5616) (�0.5704; �0.3645)

K Q
1 ð3; 3Þ 0.9978 0.7034 2.0676

(0.8973; 1.1091) (0.6085; 0.8105) (1.8292; 2.3643)

K Q
0 ð1Þ 0.2007 0.3151 0.4025

(0.0512; 0.3598) (0.0116; 0.9799) (0.0150; 1.2020)

K Q
0 ð2Þ 0 0.1265 0.0860

(0.0061; 0.3487) (0.0027; 0.2573)

K Q
0 ð3Þ 0 0 0.1091

(0.0030; 0.3853)

�2ð1; 1Þ �0.2266 �0.5373 �0.1816
(�0.4344; �0.0354) (�1.1425; 0.0643) (�0.4421; 0.0618)

�2ð1; 2Þ 0 �0.0120 0
(�0.0656; 0.0432)

�2ð1; 3Þ 0 0 0
�2ð2; 1Þ 44.521 1.7510 0

(�8.8602; 102.24) (0.1299; 3.5417)
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Table 6. (Continued )

A1ð3Þ semi A2ð3Þ semi A3ð3Þ semi

�2ð2; 2Þ �0.7913 �0.2300 �0.1307
(�1.3310; �0.3108) (�0.4277; �0.0436) (�0.3832; 0.0754)

�2ð2; 3Þ 9.5370 0 0
(3.8843; 15.659)

�2ð3; 1Þ �4.2775 �0.0038 0
(�8.3133; �0.4301) (�1.8916; 1.7677)

�2ð3; 2Þ 0.0344 �0.5012 0
(0.0012; 0.0692) (�1.2073; 0.1956)

�2ð3; 3Þ �0.3247 0.0734 0.0258
(�0.7180; 0.0642) (�0.1973; 0.3397) (�0.6131; 0.6924)

�2 4.87e� 7 4.93e� 7 5.05e� 7

(4.55e� 7; 5.21e� 7) (4.61e� 7; 5.27e� 7) (4.72e� 7; 5.40e� 7)

Table 7. Model estimates, semi-a±ne models (part 2). This table shows pa-
rameter estimates along with con¯dence bands for all three-factor semi-a±ne
models. The parameters K P

1 are showed for completeness although they are
functions of other parameters and are not estimated.

A1ð3Þ semi A2ð3Þ semi A3ð3Þ semi

�1ð1Þ 0 0 0
�1ð2Þ 354.7 0 0

(�262.2; 987.4)
�1ð3Þ �39.59 0.4730 0

(�85.59; 5.146) (�2.7826; 3.7789)
�0ð1Þ 1.1072 1.7070 1.4964

(0.2389; 2.0524) (0.4543; 2.9491) (0.2609; 2.8186)
�0ð2Þ �2.6947 1.1442 0.2122

(�6.1536; 0.7308) (0.2694; 2.0719) (�0.5954; 1.1719)
�0ð3Þ 3.2914 1.9358 0.1543

(�0.1475; 6.7605) (�1.5803; 5.6885) (�1.0367; 1.3608)

�0 0.0176 0.0215 0.0070
(0.0174; 0.0178) (0.0206; 0.0224) (0.0058; 0.0092)

�xð1Þ 0.0024 0.0052 �0.0010
(0.0023; 0.0026) (0.0040; 0.0063) (�0.0015; �0.0007)

�xð2Þ 5.63e� 6 0.0012 0.0024
(1.14e� 6; 11.1e� 6) (0.0010; 0.0015) (0.0019; 0.0028)

�xð3Þ 4.10e�4 0.0023 0.0120
(3.45e� 4; 5.03e� 4) (0.0018; 0.0028) (0.0100; 0.0137)

�2ð1Þ 12298 0 0
(8798; 15703)

�3ð1Þ 64.67 0.7379 0
(43.93; 92.34) (0.0155; 3.1019)

�3ð2Þ 0 2.3153 0
(1.4752; 3.5721)
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5.1. Campbell–Shiller regression coe±cients

Table 8 shows the Campbell–Shiller regression coe±cients for the models.9

We see that the ability of essentially a±ne models to capture the CS

regression coe±cients decrease in the number of volatility factors. For

example, the coe±cients for the ¯ve-year bond are �0.591, 0.314, 0.690, and

1.309 for the models with 0, 1, 2, and 3 volatility factors. Only the A0ð3Þ
model is able to capture the downward sloping curve of CS coe±cients and

has con¯dence bands that contain the actual CS coe±cients, and all models

with stochastic volatility miss the slope and sign of the CS coe±cients. This is

consistent with ¯ndings in Dai and Singleton (2002).

We see that the results for the semi-a±ne models are comparable to those

of the essentially a±ne models, so the non-linear term in semi-a±ne models

does not help in replicating time-varying risk premia. In contrast, while ex-

tended a±ne models are not able to beat the A0ð3Þmodel in capturing the CS

coe±cients, they do better than their essentially a±ne counterparts. We see a

Table 7. (Continued )

A1ð3Þ semi A2ð3Þ semi A3ð3Þ semi

K P
1 ð1; 1Þ 0.2352 1.9576 0.4220

(0.0432; 0.4417) (1.3053; 2.6334) (0.1822; 0.6797)

K P
1 ð1; 2Þ 0 �0.2215 �0.0627

(�0.3293; �0.1601) (�0.1195; �0.0067)

K P
1 ð1; 3Þ 0 0 �0.7770

(�0.9932; �0.6401)

K P
1 ð2; 1Þ �44.20 �0.1222 �0.1361

(�101.89; 9.159) (�0.3498; �0.0044) (�0.1779; �0.1035)

K P
1 ð2; 2Þ 0.9199 0.2571 0.3132

(0.4277; 1.4603) (0.0701; 0.4554) (0.1073; 0.5641)

K P
1 ð2; 3Þ �3.2741 0 �0.0383

(�9.4159; 2.3856) (�0.1285; �0.0011)

K P
1 ð3; 1Þ 5.0731 3.7552 �0.0044

(1.2039; 9.1203) (1.9899; 5.6890) (�0.0148; �0.0001)

K P
1 ð3; 2Þ �0.0961 �0.1450 �0.4413

(�0.1353; �0.0618) (�0.8622; 0.5617) (�0.5704; �0.3645)

K P
1 ð3; 3Þ 1.3224 0.6300 2.0418

(0.9367; 1.7109) (0.3427; 0.9294) (1.4177; 2.6813)

9The density of each population coe±cient is obtained by analytically calculating the re-
gression coe±cient for each MCMC draw and empirically estimating a density based on the
20,000 analytical coe±cients. The regression coe±cients are calculated from simulated data
and details about the simulation procedure is given in Appendix B.2.
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slight improvement in time-varying predictability in the A1ð3Þ model, a

sizeable improvement in the A2ð3Þ model and a dramatic improvement in the

A3ð3Þ model.

In the literature essentially a±ne A0ð3Þ and A1ð3Þ models have generally

been preferred over the A2ð3Þ and A3ð3Þ models partly because of the latter

models' inability to capture time-varying risk premia. The semi-a±ne models

inherit this inability. In contrast, the results in this paper show that in terms

of predictability the extended a±ne with two or three volatility factors do as

well as their one volatility factor counterparts.

5.2. Conditional volatility

In Sec. 2, monthly squared yield changes are regressed on the level, slope, and

curvature of the term structure, and if a model captures the dynamics of time-

varying volatility correctly the model should replicate the signi¯cant level

coe±cients along with the slope and curvature coe±cients. Table 9 shows the

model-implied regression coe±cients.

Table 8. Model-implied Campbell–Shiller regression coe±cients. This table shows the re-

gression coe±cients from the regressions Y ðt þ 1; n � 1Þ � Y ðt; nÞ ¼ constþ �n ½Y ðt;nÞ�Y ðt;1Þ
n�1 �þ

residual where n and t are measured in years. The procedure for calculating the coe±cients
in the models takes into account ¯nite-sample bias by simulating as explained in the text.

n 2 3 4 5

Actual �0.775 �1.131 �1.520 �1.494
A0ð3Þ ess �0.206 �0.316 �0.447 �0.591

(�1.089; 0.497) (�1.338; 0.519) (�1.561; 0.479) (�1.798; 0.417)
A1ð3Þ ess 0.302 0.243 0.262 0.314

(�0.364; 0.887) (�0.425; 0.892) (�0.430; 0.971) (�0.418; 1.075)
A2ð3Þ ess 0.558 0.587 0.636 0.690

(�0.087; 1.169) (�0.124; 1.231) (�0.110; 1.338) (�0.084; 1.415)
A3ð3Þ ess 1.080 1.158 1.236 1.309

(0.796; 1.323) (0.827; 1.424) (0.870; 1.530) (0.946; 1.602)
A1ð3Þ ext 0.231 0.089 0.071 0.134

(�0.293; 0.649) (�0.443; 0.541) (�0.502; 0.532) (�0.441; 0.598)
A2ð3Þ ext 0.381 0.340 0.337 0.359

(�0.138; 0.872) (�0.232; 0.878) (�0.289; 0.924) (�0.302; 0.981)
A3ð3Þ ext 0.282 0.233 0.192 0.147

(�0.184; 0.765) (�0.326; 0.826) (�0.421; 0.851) (�0.502; 0.846)
A1ð3Þ semi 0.422 0.358 0.379 0.434

(�0.155; 0.960) (�0.268; 0.944) (�0.255; 0.992) (�0.204; 1.061)
A2ð3Þ semi 0.619 0.618 0.636 0.662

(�0.068; 1.115) (�0.093; 1.133) (�0.087; 1.165) (�0.070; 1.188)
A3ð3Þ semi 1.292 1.401 1.476 1.530

(0.857; 1.512) (0.909; 1.658) (0.921; 1.760) (0.938; 1.858)
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Since the A0ð3Þ model does not accommodate stochastic volatility, coef-

¯cients for every maturity are estimated to be zero which is not consistent

with the data. All models with stochastic volatility capture the positive sign

and the downward sloping curve with respect to maturity of the level coef-

¯cients. The models largely agree on the size of the level coe±cients although

the extended A1ð3Þ model estimates the coe±cients somewhat lower than

other stochastic volatility models. However, the actual size of the coe±cients

in the data is approximately twice as big as the model-implied coe±cients, so

none of the models capture the coe±cients in the data. For example, the

actual ¯ve-year coe±cient is 0.044 while in the a±ne models with stochastic

volatility it is estimated to be in the range 0.018–0.027 and this di®erence is

statistically signi¯cant.

In addition to the failure of replicating the correct level coe±cients none of

the models simultaneously replicate the correct sign of the slope and curva-

ture regression coe±cients. While the actual slope coe±cients are negative

(except for the ¯ve-year maturity) and the curvature coe±cients are positive,

the models with one and two volatility factors predict positive coe±cients on

slope and curvature while the models with three stochastic factors predict

negative coe±cients for long maturities and positive coe±cients for short

maturities.10

The evidence on conditional volatility is largely consistent with the results

in Brandt and Chapman (2003) who conclude that quadratic term structure

models provide a better ¯t to US term structure data than essentially a±ne

models and point to conditional volatility regression results similar to the

regression in Table 9 as the most important factor in the di®erence of ¯t

between the two model classes.

Why do three-factor a±ne models fail to replicate the conditional re-

gression coe±cients? To provide a possible answer it is useful to compare

model-implied conditional volatility with an estimate of actual conditional

volatility. As a proxy for actual conditional volatility the conditional vola-

tility from a EGARCH(1,1) model is estimated. Figure 1 graphs the model-

implied and EGARCH(1,1) conditional volatility for the ¯ve-year yield.11 In

10In a previous version of the paper, the robustness of the results are tested by running a
volatility regression where the dependent variable is yearly instead of monthly volatility and
an ARCH term is added as an explanatory variable. The results are very similar and available
on request.
11The model-implied conditional volatility is calculated for each of the 20,000 draws in the
MCMC sampler and the mean and con¯dence band of the time t ¼ 1; . . . ; 631 conditional
volatility is estimated on basis of the 20,000 draws of time t conditional volatility.
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the following we focus on the essentially and extended a±ne models for

brevity, but results for the semi-a±ne models are similar.

The ¯gure shows that all models to some extent capture the persistence

in conditional volatility apart from the period in the beginning of the 80s.

While the EGARCH estimate is outside the con¯dence band for the models

in some periods the trend is the same. It is also clear from the ¯gures that

all models fail to capture the high volatility during the Fed experiment

from October 1979 to October 1982. Volatility in the ¯ve-year yield across

the models is roughly 50% lower than actual volatility. To investigate the

in°uence of the Fed experiment on the volatility regression results, Table 10

shows the regression coe±cients for the period before and after the Fed

experiment.

Compared to the coe±cients obtained using the whole sample the results

are strikingly di®erent: the level coe±cient is only about half the size before

the Fed experiment and about one-third after the Fed experiment. In both
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Fig. 1. Actual and model-implied ¯ve-year conditional volatility. This ¯gure depicts for the
a±ne models with stochastic volatility the estimate and con¯dence band of the monthly
conditional volatility in the ¯ve-year yield along with an EGARCH(1,1) estimate.
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subperiods the level e®ect is still statistically signi¯cant. In addition, the slope

coe±cient is positive in both periods while it is negative for four out of ¯ve

maturities when looking at the whole sample. The sign of the curvature

coe±cient is positive in the whole sample and both periods. The positive slope

and curvature coe±cients are consistent with results in Christiansen and

Lund (2005) and the volatility regression results for the two subperiods are

more in line with model-implied regression coe±cients. The size of the level

e®ect in the a±ne models are largely consistent with the size in the two

subperiods. For example, the essentially a±ne A2ð3Þ model has level coe±-

cients that statistically match the actual level coe±cients for all maturities

for the period before the Fed experiment while the extended a±ne A1ð3Þ
model has level coe±cients matching all the coe±cients for the period after

Table 10. Volatility regression in subperiods. This table shows the coe±cients from
the same volatility regression as Table 1 except that the regression is split into
the period before the Fed Experiment and after the Fed Experiment. The regression
is ½Y ðt þ 1; nÞ � Y ðt; nÞ�2 ¼ constþ �nð1Þ½Y ðt; 5Þ� þ �nð2Þ½Y ðt; 5Þ � Y ðt; 1Þ� þ �nð3Þ
½Y ðt; 5Þ þ Y ðt; 1Þ � 2Y ðt; 3Þ� þ residual and in parenthesis are shown Hansen and
Hodrick (1980) standard errors with 6 lags and signi¯cance at the 5%, 1%, or 0.1%
level is denoted by �; ��; or � � �.

n 1 2 3 4 5

Whole sample period 1952:6 to 2004:12
Level 0.1095��� 0.0713��� 0.0565��� 0.0519��� 0.0438���

(0.0202) (0.0132) (0.0102) (0.0075) (0.0058)
Slope �0.1415 �0.0785 �0.0316 �0.0196 0.0156

(0.0960) (0.0631) (0.0479) (0.0362) (0.0286)
Curvature 0.2712 0.1082 0.1657 0.0776 0.1262�

(0.1968) (0.1304) (0.0974) (0.0755) (0.0603)

Period before the Fed experiment 1952:6 to 1979:9

Level 0.0465��� 0.0285��� 0.0266��� 0.0253��� 0.0183��

(0.0097) (0.0068) (0.0067) (0.0061) (0.0056)
Slope 0.0551 0.0368 0.0272 0.0236 0.0201

(0.0483) (0.0349) (0.0326) (0.0303) (0.0263)
Curvature 0.1330 0.0014 0.0107 0.0240 0.0539

(0.0795) (0.0583) (0.0531) (0.0498) (0.0419)

Period after the Fed experiment 1982:11 to 2004:12

Level 0.0306��� 0.0195��� 0.0174��� 0.0198��� 0.0180���

(0.0051) (0.0048) (0.0046) (0.0049) (0.0049)
Slope 0.0254 0.0316 0.0511�� 0.0639�� 0.0605��

(0.0209) (0.0195) (0.0191) (0.0199) (0.0200)
Curvature 0.0368 0.0577 0.0750 0.1268� 0.1116

(0.0601) (0.0564) (0.0560) (0.0584) (0.0575)
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the Fed experiment. For the A1ð3Þ and A2ð3Þ models the positive slope and

curvature coe±cients are consistent with the positive coe±cients found in the

subperiods while the negative coe±cients for the A3ð3Þ models are not. The

size of the positive slope and curvature coe±cients in the A1ð3Þ models are

comparable with those estimated in the two subperiods while they are gen-

erally too high in the A2ð3Þ models. Therefore, comparing the model-implied

coe±cients with the coe±cients from the subperiods leads to the conclusion

that A1ð3Þ models capture volatility well and that the ability to capture

volatility dynamics of yields does not improve with the number of stochastic

volatility factors. This might be because the advantage of increasing the

number of factors entering volatility is outweighed by the more restricted

correlation structure between factors.

Table 11 shows that the correlations between EGARCH and model-im-

plied volatility are positive and in the range of 67:5% to 80:8% across models

and maturity for the whole sample and similar correlations are found in the

Table 11. Correlation between model-implied and actual conditional volatility. This table
shows the correlation between model-implied monthly conditional volatility and an EGARCH
(1,1) estimate of monthly conditional volatility.

A1ð3Þ ess A2ð3Þ ess A3ð3Þ ess A1ð3Þ ext A2ð3Þ ext A3ð3Þ ext
Whole sample period 1952:6 to 2004:12

One-year 69.9 67.5 73.1 72.5 68.8 72.9
(68.8; 70.9) (63.9; 70.1) (72.8; 73.6) (71.5; 73.6) (65.4; 71.1) (71.4; 74.0)

Two-year 74.0 71.4 72.3 75.1 72.8 73.8
(73.2; 74.7) (67.2; 74.4) (72.0; 72.8) (74.3; 75.9) (69.1; 74.8) (73.1; 74.7)

Three-year 78.1 76.6 74.3 78.6 77.9 76.1
(77.4; 78.7) (73.1; 79.0) (73.9; 75.0) (77.9; 79.4) (75.4; 79.5) (74.8; 77.2)

Four-year 80.7 79.2 76.1 80.8 80.5 77.9
(79.9; 81.3) (75.8; 81.5) (75.7; 76.7) (80.1; 81.6) (78.1; 81.9) (76.4; 79.2)

Five-year 78.7 78.5 73.1 78.6 79.4 74.8
(77.9; 79.5) (75.9; 80.3) (72.8; 73.7) (77.7; 79.5) (77.8; 80.8) (73.4; 76.2)

Average 76.3 74.6 73.8 77.2 75.9 75.1
(75.6; 76.9) (71.3; 76.9) (73.5; 74.3) (76.4; 77.9) (73.2; 77.5) (74.2; 76.0)

Period before the Fed experiment 1952:6 to 1979:9

One-year 77.2 73.0 71.9 76.7 74.2 75.4
(75.6; 78.6) (66.2; 79.1) (70.9; 72.7) (75.1; 78.2) (65.9; 79.6) (74.1; 76.9)

Two-year 72.3 66.6 67.2 70.4 69.3 70.3
(70.4; 74.0) (58.6; 74.1) (66.6; 67.9) (68.2; 72.3) (59.9; 75.3) (68.7; 71.9)

Three-year 75.5 72.0 71.5 74.0 74.9 73.7
(73.7; 77.1) (65.6; 77.1) (71.0; 72.2) (72.0; 75.7) (68.3; 79.1) (72.3; 74.8)

Four-year 76.9 74.4 72.8 75.3 77.2 74.8
(75.2; 78.4) (68.7; 78.8) (72.2; 73.5) (73.5; 77.0) (71.8; 80.7) (73.4; 76.0)
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subperiods before and after the Fed experiment although the latter period has

somewhat smaller correlations. This result is consistent with Almeida et al.

(2006) who ¯nd similar positive correlations between conditional volatilities

of yields of di®erent maturities and GARCH estimates, while Collin-Dufresne

et al. (2006) ¯nd that an extended A1ð3Þ model generates a time series of

volatility that is negatively correlated with a GARCH estimate of the short

rate volatility. The di®erences might be due to di®erent sample periods and

that the short rate has quite di®erent volatility dynamics from longer-

maturity yields.12

Comparing essentially and extended models, the correlations suggest that

extended A2ð3Þ and A3ð3Þ models do slightly better in capturing conditional

volatility than their essentially a±ne counterparts since they have higher

average correlations in the whole period and in both subsamples. Ahn et al.

(2002) ¯nd that completely a±ne models fare very poorly in capturing the

conditional volatility of yield changes and evidence in Dai and Singleton

(2003) suggests that persistence of volatility is larger in essentially a±ne

models than in completely a±ne models. Therefore, the literature suggests

that there are gains in matching time-varying volatility in moving from

12See Joslin (2006) and Jacobs and Karoui (2009) for an elaboration on this point.

Table 11. (Continued )

A1ð3Þ ess A2ð3Þ ess A3ð3Þ ess A1ð3Þ ext A2ð3Þ ext A3ð3Þ ext
Five-year 67.3 67.4 62.5 65.8 69.3 64.1

(65.4; 69.1) (62.9; 71.1) (62.0; 63.1) (63.8; 67.7) (65.4; 73.0) (63.0; 65.3)
Average 73.8 70.7 69.2 72.4 73.0 71.7

(72.1; 75.4) (64.5; 75.7) (68.7; 69.8) (70.6; 74.1) (66.4; 77.2) (70.4; 72.8)

Period after the Fed experiment 1982:11 to 2004:12

One-year 79.8 62.2 76.3 80.7 65.3 79.7
(78.0; 79.9) (46.7; 78.1) (75.3; 77.2) (79.4; 82.0) (48.6; 77.4) (78.1; 81.2)

Two-year 74.4 66.1 63.0 73.8 70.2 67.6
(72.8; 76.0) (54.0; 76.0) (62.2; 64.5) (72.1; 75.4) (58.4; 76.4) (64.1; 71.2)

Three-year 70.9 65.4 57.2 69.8 69.5 61.7
(68.9; 72.8) (55.0; 73.0) (56.3; 58.8) (67.9; 71.8) (60.7; 74.2) (57.9; 65.5)

Four-year 70.6 66.7 56.7 59.5 70.2 60.5
(68.6; 72.4) (57.9; 72.9) (55.8; 58.2) (67.6; 71.6) (63.4; 74.0) (57.1; 64.2)

Five-year 69.3 67.4 54.6 67.9 70.4 57.9
(67.2; 71.3) (60.1; 72.3) (53.8; 55.9) (65.7; 70.1) (65.2; 73.6) (54.8; 61.5)

Average 73.0 65.5 61.6 72.3 69.1 65.5
(71.4; 74.6) (55.0; 74.2) (60.9; 62.9) (70.7; 74.0) (59.5; 74.6) (62.5; 68.6)
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completely a±ne to essentially a±ne models and the correlations suggest that

gains in moving from essentially a±ne to extended a±ne models are positive

but small for the A2ð3Þ and A3ð3Þmodels. However, the results also show that

there is no clear di®erence between the essentially and extended a±ne A1ð3Þ
models and the regression coe±cients and correlations suggest that the A1ð3Þ
model does better than the A2ð3Þ and A3ð3Þ models. Therefore, there is no

clear evidence showing that any of the extended models match volatility

better than the essentially a±ne A1ð3Þ model.

Overall, the results in this section show that extended A2ð3Þ and A3ð3Þ
models have slightly better volatility dynamics than their essentially

a±ne counterparts, but volatility dynamics in A1ð3Þ models ��� where the

di®erence between extended and essentially a±ne is small ��� are most in

accordance with moments in historical data. However, none of the models can

capture the high volatility during the monetary experiment.

Collin-Dufresne et al. (2009) show that a±ne models with so-called

Unspanned Stochastic Volatility (USV) have better volatility dynamics, but

Creal andWu (2015) show that USV models cannot match the high volatility

of the early 1980s either. It seems that one has to move outside the pure a±ne

models to capture the volatility dynamics over long periods of time, such as

regime-switching models (Bansal et al., 2004; Dai et al., 2007) or non-linear

models (Feldhütter et al., 2015).

5.3. Unconditional moments

Turning to unconditional moments, Tables 12 and 13 show model-implied

unconditional mean and volatility of yields.

All models regardless of risk premium speci¯cation and number of vola-

tility factors capture the size and slope of the mean and volatility curves.

Table 12. Unconditional mean of yields. The ¯rst line in this Table shows the unconditional
mean in percent of the yields in the data where n denotes maturity. The next lines show the
model-implied unconditional mean, median, and con¯dence bands of yields for the estimated
models. These are calculated on basis of simulated yields as explained in the text.

n 1 2 3 4 5

Actual 5.60 5.81 5.98 6.11 6.19

Panel A
A0ð3Þ ess
Mean 6.12 6.37 6.57 6.71 6.81
Median 5.86 6.09 6.31 6.45 6.55

(1.22; 13.75) (1.48; 14.01) (1.63; 14.17) (1.74; 14.25) (1.83; 14.28)
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However, the unconditional mean of yields is hard to pin down with rea-

sonable precision. For example, the average ¯ve-year yield is 6.19% while the

95% con¯dence band in the essentially a±ne A1ð3Þ model is ½2:84%; 40:90%�.
Thus, the average yield curve is not a moment that is useful to statistically

discriminate between models.

Table 12. (Continued )

n 1 2 3 4 5

A1ð3Þ ess
Mean 9.56 10.06 10.44 10.71 10.88
Median 4.63 4.80 4.92 5.02 5.10

(2.29; 39.29) (2.48; 38.98) (2.72; 39.46) (2.82; 40.39) (2.84; 40.90)
A2ð3Þ ess
Mean 28.69 30.74 32.17 33.10 33.63
Median 5.25 5.49 5.66 5.76 5.83

(2.44; 49.77) (2.57; 52.85) (2.70; 53.60) (2.76; 54.09) (2.76; 55.24)
A3ð3Þ ess
Mean 15.42 15.89 16.23 16.43 16.52
Median 5.77 6.02 6.22 6.39 6.53

(2.59; 49.81) (2.71; 50.98) (2.80; 52.04) (2.88; 52.74) (2.94; 53.08)

Panel B
A1ð3Þ ext
Mean 6.83 7.09 7.29 7.44 7.53
Median 6.27 6.54 6.72 6.89 7.02

(4.15; 13.18) (4.37; 13.40) (4.54; 13.56) (4.67; 13.66) (4.78; 13.71)
A2ð3Þ ext
Mean 6.39 6.68 6.90 7.06 7.18
Median 5.97 6.23 6.46 6.54 6.64

(4.50; 11.19) (4.68; 11.89) (4.84; 12.34) (4.95; 12.51) (5.04; 12.67)
A3ð3Þ ext
Mean 6.23 6.46 6.65 6.79 6.88
Median 6.00 6.24 6.42 6.55 6.64

(4.04; 9.61) (4.29; 9.86) (4.50; 10.10) (4.67; 10.26) (4.80; 10.36)

Panel C
A1ð3Þ semi
Mean 7.13 7.38 7.56 7.68 7.75
Median 6.06 6.31 6.53 6.68 6.75

(3.62; 13.32) (3.86; 13.10) (4.03; 13.43) (4.13; 13.60) (4.23; 13.66)
A2ð3Þ semi
Mean 6.44 6.70 6.91 7.05 7.15
Median 6.16 6.38 6.60 6.73 6.80

(4.26; 11.32) (4.44; 11.27) (4.60; 11.72) (4.74; 11.78) (4.86; 11.92)
A3ð3Þ semi
Mean 6.91 7.13 7.31 7.43 7.51
Median 6.01 6.25 6.44 6.59 6.69

(3.25; 17.39) (3.41; 17.69) (3.53; 17.65) (3.61; 17.57) (3.70; 17.31)
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Table 13. Unconditional volatility of yields. The ¯rst line in this table shows the uncondi-
tional volatility (standard deviation) in basis points of monthly yield changes in the data
where n denotes maturity. The next line show the model-implied unconditional mean, median,
and con¯dence bands of volatility of monthly yield changes for the estimated models. These
are calculated on basis of simulated yields as explained in the text.

n 1 2 3 4 5

Actual 49.3 43.2 40.1 38.8 36.2

Panel A
A0ð3Þ ess
Mean 48.8 43.6 39.8 37.2 35.4
Median 48.7 43.6 39.8 37.2 35.4

(46.3; 51.6) (41.4; 45.9) (37.9; 41.9) (35.3; 39.2) (33.6; 37.3)
A1ð3Þ ess
Mean 47.2 42.5 39.9 37.9 36.1
Median 35.7 32.3 30.4 28.8 27.5

(18.1; 134.2) (16.4; 121.1) (15.4; 113.6) (14.7; 107.5) (14.0; 102.2)
A2ð3Þ ess
Mean 54.6 48.9 45.6 42.8 40.4
Median 39.0 35.1 32.6 30.7 28.9

(15.3; 159.8) (13.1; 141.3) (12.0; 130.5) (11.1; 122.9) (10.4; 116.1)
A3ð3Þ ess
Mean 63.6 56.8 52.9 49.9 47.5
Median 48.6 43.5 40.5 38.2 36.3

(27.8; 158.8) (24.9; 142.3) (23.1; 132.6) (21.8; 125.0) (20.6; 118.7)

Panel B
A1ð3Þ ext
Mean 45.6 40.5 37.6 35.3 33.4
Median 44.2 39.4 36.6 34.5 32.4

(35.3; 67.1) (31.5; 57.7) (29.5; 52.7) (27.6; 49.6) (26.0; 47.0)
A2ð3Þ ext
Mean 48.3 42.9 40.0 37.9 36.2
Median 46.6 41.4 38.6 36.6 35.0

(36.9; 71.1) (32.1; 63.9) (29.9; 60.0) (28.3; 57.0) (27.0; 54.5)
A3ð3Þ ext
Mean 45.9 42.8 40.3 37.9 35.6
Median 45.4 42.1 39.6 37.2 35.0

(35.8; 58.8) (33.0; 54.9) (31.2; 51.5) (29.5; 48.2) (27.9; 45.3)

Panel C
A1ð3Þ semi
Mean 47.5 43.2 40.6 38.5 36.7
Median 45.8 41.6 39.1 37.1 35.4

(31.0; 70.0) (28.0; 63.0) (26.4; 59.3) (25.0; 56.1) (23.8; 53.2)
A2ð3Þ semi
Mean 47.7 43.0 39.9 37.6 35.8
Median 46.6 41.8 38.9 36.7 35.0

(37.0; 66.2) (33.5; 59.7) (31.1; 55.5) (29.2; 52.3) (27.9; 50.1)
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Extended and semi-a±ne models estimate volatility with much less un-

certainty than the essentially a±ne models. For example, the length of the

con¯dence band for the volatility of the ¯ve-year yield in the essentially a±ne

A1ð3Þ model is 88.2 basis points while it is 21.0 in the extended A1ð3Þ model

and 29.4 in the semi-a±ne A1ð3Þ model. The A0ð3Þ model which is relieved

from the task of ¯tting conditional volatility estimates the volatility of the

¯ve-year yield with a con¯dence band of only 3.7 basis points.

Di®erences in the models become clear when we examine higher order

moments. Tables 14 and 15 report the skewness and (excess) kurtosis of

yields. Since yields in the A0ð3Þ model are normal distributed, skewness and

kurtosis are zero for all yields and the results are therefore not shown for this

model.

Table 13. (Continued )

n 1 2 3 4 5

A3ð3Þ semi
Mean 50.7 44.3 41.9 39.3 37.2
Median 48.5 43.3 40.2 37.7 35.6

(34.0; 80.0) (30.7; 72.4) (28.2; 67.7) (26.3; 63.7) (24.7; 60.3)

Table 14. Unconditional skewness of yields. The ¯rst line in this table shows the
unconditional skewness of monthly yields in the data where n denotes maturity. The
next line show the model-implied unconditional mean, median, and con¯dence bands
of unconditional skewness for the estimated models. These are calculated on basis of
simulated yields as explained in the text.

n 1 2 3 4 5

Actual 0.83 0.79 0.78 0.77 0.77

Panel A
A1ð3Þ ess
Mean 2.16 2.21 2.25 2.26 2.27
Median 2.13 2.18 2.21 2.22 2.23

(1.26; 3.19) (1.41; 3.21) (1.47; 3.28) (1.48; 3.35) (1.50; 3.36)
A2ð3Þ ess
Mean 1.67 1.77 1.85 1.91 1.95
Median 1.68 1.73 1.79 1.83 1.84

(�0.20; 3.41) (0.23; 3.49) (0.41; 3.71) (0.64; 3.82) (0.66; 3.88)
A3ð3Þ ess
Mean 1.55 1.55 1.54 1.53 1.52
Median 1.52 1.51 1.50 1.50 1.49

(1.02; 2.28) (1.01; 2.28) (1.01; 2.27) (1.00; 2.27) (1.00; 2.27)
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Table 14. (Continued )

n 1 2 3 4 5

Panel B
A1ð3Þ ext
Mean 0.84 0.88 0.90 0.92 0.93
Median 0.81 0.84 0.86 0.88 0.89

(0.55; 1.35) (0.59; 1.38) (0.61; 1.39) (0.63; 1.39) (0.65; 1.41)
A2ð3Þ ext
Mean 0.77 0.84 0.88 0.91 0.93
Median 0.78 0.85 0.89 0.91 0.93

(0.32; 1.16) (0.42; 1.18) (0.53; 1.19) (0.61; 1.21) (0.65; 1.23)
A3ð3Þ ext
Mean 0.88 0.90 0.90 0.90 0.90
Median 0.87 0.89 0.90 0.89 0.89

(0.62; 1.18) (0.65; 1.19) (0.65; 1.20) (0.64; 1.20) (0.64; 1.20)

Panel C
A1ð3Þ semi
Mean 0.76 0.79 0.80 0.79 0.79
Median 0.66 0.69 0.71 0.71 0.70

(0.37; 1.49) (0.40; 1.52) (0.46; 1.50) (0.48; 1.49) (0.48; 1.45)
A2ð3Þ semi
Mean 0.55 0.58 0.60 0.61 0.62
Median 0.50 0.53 0.55 0.57 0.57

(0.29; 1.08) (0.33; 1.14) (0.37; 1.18) (0.39; 1.21) (0.40; 1.22)
A3ð3Þ semi
Mean 0.87 0.86 0.84 0.82 0.81
Median 0.80 0.79 0.78 0.76 0.74

(0.54; 1.75) (0.53; 1.71) (0.52; 1.67) (0.50; 1.64) (0.49; 1.61)

Table 15. Unconditional excess kurtosis of yields. The ¯rst line in this table shows the
unconditional excess kurtosis of monthly yields in the data where n denotes maturity. The
next line show the model-implied unconditional mean, median, and con¯dence bands of
unconditional skewness for the estimated models. These are calculated on basis of simu-
lated yields as explained in the text.

n 1 2 3 4 5

Actual 0.77 0.57 0.51 0.44 0.35

Panel A
A1ð3Þ ess
Mean 7.39 7.54 7.62 7.66 7.68
Median 6.60 6.82 6.98 6.97 7.00

(2.43; 17.23) (2.43; 17.35) (2.50; 17.54) (2.47; 17.45) (2.42; 17.36)
A2ð3Þ ess
Mean 5.67 5.93 6.19 6.43 6.62
Median 4.46 4.53 4.66 4.78 4.80

(0.80; 18.38) (0.81; 20.17) (0.84; 20.62) (0.87; 20.85) (0.95; 22.26)
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It is clear from the tables that the distribution of yields in essentially a±ne

models are too skewed and leptokurtic compared to what we see in the data.

For example, the skewness and kurtosis of the ¯ve-year yield in the essentially

a±ne A1ð3Þmodel are 2.27 and 7.68 while they are 0.77 and 0.35 in the actual

data and the di®erences are statistically highly signi¯cant. The skewness

and kurtosis decrease with the number of volatility factors in the essentially

a±ne models, but even in the A3ð3Þ model they are larger than in the data

and the di®erence remains statistically signi¯cant. In contrast, extended

and semi-a±ne models do better in capturing the skewness and kurtosis in

yields. The models estimate the skewness of yields to be close to the skewness

in the actual data and the di®erences are statistically insigni¯cant. Also

Table 15. (Continued )

n 1 2 3 4 5

A3ð3Þ ess
Mean 3.58 3.54 3.50 3.46 3.44
Median 3.26 3.20 3.12 3.07 3.05

(0.99; 7.55) (0.97; 7.65) (0.93; 7.72) (0.91; 7.77) (0.91; 7.81)

Panel B
A1ð3Þ ext
Mean 1.22 1.28 1.31 1.34 1.36
Median 1.02 1.06 1.11 1.13 1.14

(0.43; 2.99) (0.47; 3.09) (0.52; 3.20) (0.51; 3.23) (0.53; 3.24)
A2ð3Þ ext
Mean 1.17 1.26 1.32 1.37 1.40
Median 1.09 1.18 1.25 1.30 1.32

(0.49; 2.20) (0.56; 2.32) (0.62; 2.44) (0.65; 2.56) (0.66; 2.58)
A3ð3Þ ext
Mean 1.20 1.23 1.23 1.23 1.23
Median 1.12 1.15 1.15 1.15 1.14

(0.54; 2.24) (0.53; 2.30) (0.52; 2.34) (0.51; 2.36) (0.50; 2.37)

Panel C
A1ð3Þ semi
Mean 1.05 1.08 1.06 1.03 0.99
Median 0.65 0.69 0.69 0.67 0.65

(0.21; 3.18) (0.23; 3.31) (0.26; 3.24) (0.26; 3.10) (0.25; 2.93)
A2ð3Þ semi
Mean 0.50 0.53 0.55 0.56 0.57
Median 0.36 0.38 0.41 0.43 0.44

(0.12; 1.65) (0.13; 1.67) (0.14; 1.79) (0.15; 1.85) (0.15; 1.91)
A3ð3Þ semi
Mean 1.23 1.19 1.15 1.11 1.07
Median 0.89 0.85 0.83 0.79 0.76

(0.35; 4.56) (0.34; 4.41) (0.31; 4.28) (0.30; 4.21) (0.28; 4.08)
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model-implied kurtosis is closer to the actual values. For example, the actual

kurtosis in the ¯ve-year yield is 0.35 while the essentially a±ne models esti-

mate it to be in the range 3.44–7.68 and the extended models estimate it to be

in the range 1.23–1.40. For long maturities the di®erence between actual and

model-implied kurtosis remains statistically signi¯cant in the extended

models. In contrast semi-a±ne models have kurtosis coe±cients close to those

in the data.

To help shed light on the reason why the distributions of yields are so

skewed in essentially a±ne models it is useful to compare essentially and

extended A1ð3Þ models. The A1ð3Þ models are chosen for comparison since

they are the most commonly used three-factor models with stochastic vola-

tility, their distributions di®er the most, and they provide the clearest intu-

ition behind the di®erence.

Empirically, the volatility factor in A1ð3Þ models is typically highly cor-

related with the yield of the bond with longest maturity ��� in this case the

¯ve-year yield ��� and has a low mean-reversion under the risk-neutral

measure while the other two factors have higher mean-reversion and often

correspond to the slope and curvature of the yield curve. This is also the case

in the A1ð3Þ models estimated in this paper. In principle there might be more

than one factor with low mean-reversion but this would limit the model's

ability to ¯t a wide variety of term-structure shapes.13 Since the two non-

volatility factors \die out" rather quickly the ¯ve-year yield is close to being

modeled as an a±ne function of a one-factor CIR process.14 As an approxi-

mation it is therefore reasonable to assume that the ¯ve-year yield is an a±ne

function of the volatility factor Xt ,

Y 5
t ’ �0 þ �xð1ÞXt;

dXt ¼ ðK0ð1Þ �K1ð1; 1ÞXtÞdt þ
ffiffiffiffiffiffi
Xt

p
dWt:

Xt is unconditionally gamma distributed with skewness
ffiffiffiffiffiffiffiffiffi

2
K0ð1Þ

q
and (excess)

kurtosis 3
K0ð1Þ and since kurtosis and absolute value of skewness are unchanged

by an a±ne transformation the ¯ve-year yield Y 5 has skewness signð�xð1ÞÞ�ffiffiffiffiffiffiffiffiffi
2

K0ð1Þ
q

and kurtosis 3
K0ð1Þ. While all the parameters �0; �xð1Þ;K0ð1Þ, and

13For a more detailed discussion on why one of the factors typically has low mean-reversion
and the other two factors a higher mean-reversion see Du®ee (2002).
14If one of the Gaussian factors exhibits low mean reversion instead of the CIR process,
the distribution of the ¯ve-year yield would be close to Gaussian and the skewness and
excess kurtosis of the ¯ve-year yield therefore be close to zero under both the pricing and
historical measure, which provides minimal °exibility in generating skewed and leptokurtic
distributions.
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K1ð1; 1Þ determine the mean of Xt and three of the parameters determine the

variance of Xt the only parameter determining kurtosis and absolute value of

skewness isK0ð1Þ. In the A1ð3Þ essentially a±ne model, the estimate ofK P
0 ð1Þ

is 0.3741. According to the previous argument K P
0 ð1Þ ¼ 0:3741 implies a

skewness and kurtosis of
ffiffiffiffiffiffiffiffiffiffi

2
0:3741

q
¼ 2:31 and 3

0:3741 ¼ 8:02 which is close to the

model-implied skewness and kurtosis of 2.27 and 7.68. In the A1ð3Þ extended
a±ne model we have K P

0 ð1Þ ¼ 2:2731 and while
ffiffiffiffiffiffiffiffiffiffi

2
2:2731

q
¼ 0:94 and 3

2:2731 ¼
1:32 we have that model-implied skewness and kurtosis are 0.93 and 1.36. In

both cases, approximating the dynamics of the ¯ve-year yield as a one-factor

CIR process implies skewness and kurtosis that are close to the model-implied

skewness and kurtosis. From Tables 14 and 15 we also see that the parameter

K P
0 ð1Þ not only determines the third and fourth moments of the ¯ve-year

yield but also plays an important role in determining the higher order

moments of the shorter-maturity yields, since the moments of the shorter-

maturity yields are similar to those of the ¯ve-year yield.

When the Q and P dynamics share parameters the Q dynamics tends to

dominate in determining the parameters in estimation and therefore in the

essentially a±ne A1ð3Þ model the skewness and kurtosis of yields under P is

primarily determined by the skewness and kurtosis under Q since the Q and

P dynamics share the parameter K0ð1Þ.15 In contrast, the parameter K0ð1Þ is
allowed to di®er under P and Q in the extended A1ð3Þ model and this dra-

matically changes skewness and kurtosis under P such that model-implied

third and fourth moments of yields more closely resembles historical third

and fourth moments. To put it simple, the actual distribution of yields in the

essentially a±ne A1ð3Þ model inherits a counterfactual skewed and lepto-

kurtic distribution from the risk-neutral dynamics while the extra risk pre-

mium parameter in the extended a±ne A1ð3Þ model allows skewness and

kurtosis of the distribution under P and Q to be di®erent.

Although extended models have more °exibility in generating distributions

with di®erent skewness and kurtosis under P and Q, the models are more

restricted in generating highly skewed and leptokurtic distributions. The

Feller condition requires K0ð1Þ > 0:5 and therefore skewness and excess

15An indication that the cross section of yields dominate the time-series properties of yields in
terms of estimating parameters can be seen in the parameter estimates in the A1ð3Þ models.
When the parameter K P

0 ð1Þ is allowed to di®er from K Q
0 ð1Þ in the extended model it is

estimated at 2:2731 while in the essentially a±ne model where K P
0 ð1Þ ¼ K Q

0 ð1Þ it is estimated
at the much smaller value 0:3741.
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kurtosis in the distribution of the ¯ve-year yield cannot be higher than 2 and 6

in the A1ð3Þmodel. While this restriction is not binding under P according to

the estimates of the extended A1ð3Þmodel ��� K P
0 ð1Þ is estimated to be much

larger than 0.5 ��� it is binding under the risk-neutral measure since the

estimate of K Q
0 ð1Þ is less than 0.5 in the essentially a±ne A1ð3Þ model.

The Feller restriction sets a tight upper limit on the skewness and kurtosis

of unconditional distribution of yields and this restriction is even tighter

when looking at the conditional distributions. As shown in Appendix C

kurtosis and the absolute value of skewness of the conditional distribution of

a CIR process Ytþ� jt are monotone increasing in � , go to zero as � goes to zero,

and go to excess kurtosis and the absolute value of skewness of the uncon-

ditional distribution as � ! 1. Therefore, skewness and kurtosis of condi-

tional distributions of yields are bounded to be lower than skewness and

kurtosis of unconditional distributions.

Figure 2 shows the historical distribution of the ¯ve-year yield along with

model-implied distributions in the models.16 The ¯gure clearly shows that the

actual distribution of the ¯ve-year yield is matched much better by extended

and semi-a±ne models ��� consistent with their improved ability to capture

higher order moments.

The extended a±ne risk premium speci¯cation allows increased °exibility

in two directions compared to the essentially a±ne. First, it allows a risk

premium, �1, on the constant term in the drift of the CIR processes. Second,

it allows an increased °exibility in the risk premium on the mean reversion

matrix, �2, since there are risk premia on the correlations between the CIR

processes.17 As shown in the previous section the extra °exibility in �1 in

extended models is important for allowing di®erences in shapes of the dis-

tributions of yields, but the cost of the °exibility is that the Feller condition

is required to hold. In addition, the added °exibility in �1 does not help

in replicating time-varying risk premia. In estimation of hybrid essentially/

extended a±ne models where the speci¯cation of �1 is that of extended

models and the speci¯cation of �2 is that of essentially a±ne models, the

resulting Campbell–Shiller regression coe±cients are close to those of the

essentially a±ne models. Therefore, the added °exibility of �2 in extended

models is important for the ability to generate time-varying risk premia. This

added °exibility allows that the loading of other volatility factors change

16Model-implied densities in the ¯gure are calculated by estimating the cumulative distribu-
tion function of the ¯ve-year yield for a ¯ne grid of values. The densities are therefore based on
all the draws in the MCMC sampler and represent the \average density".
17Equations (A.1)–(A.3) in Appendix A illustrate the increased °exibility on �1 and �2.
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under the risk-neutral and historical measure in the drift of each volatility

factor. In semi-a±ne models, the loadings of other volatility factors in the

drift of a volatility factor cannot change and therefore the extra risk premium

term does not help in capturing the Campbell–Shiller coe±cients. However,

the extra risk premium term in semi-a±ne models helps in ¯tting higher order

moments of historical yields. The non-linear term therefore plays a role that

is very similar to the extra terms in �1 in extended models without requiring

the Feller condition to hold.

The Feller condition limits the degree of leptokurtic behavior that yields

can exhibit in extended a±ne models and therefore limits the variety of yield

curve shapes. Since the condition is binding extended models are less suited

for pricing purposes. To illustrate this phenomenon, Fig. 3 shows the actual
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Fig. 2. Distribution of ¯ve-year yield. This ¯gure shows the actual distribution of the ¯ve-
year yield along with model-implied distributions for the essentially, extended, and semi-a±ne
models. Model-implied distributions are based on the estimated values of the cumulative
distribution function of the ¯ve-year yield for a ¯ne grid of yield values.
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and risk-neutral distribution of the ¯ve-year yield for all models with sto-

chastic volatility.18

We see in the top three graphs in the ¯gure that essentially a±ne models

generate actual and risk-neutral distributions that have similar shapes which

causes the actual distribution of yields to be too leptokurtic as Fig. 2 docu-

mented. Essentially a±ne models share higher order moments under the his-

torical and risk-neutralmeasure causing a tension betweeen ¯tting the shape of

the yield curve and the actual distribution of yields. In extendedmodels, we saw

that the actual distribution of the ¯ve-year yield is ¯tted well, but the middle

three graphs in Fig. 3 show that although the risk-neutral distribution is more
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Fig. 3. Distribution of ¯ve-year yield under the actual and risk-neutral measure. This ¯gure
shows the model-implied distributions under both the historical and risk-neutral measure for
the essentially, extended, and semi-a±ne models. The solid lines show risk-neutral densities
while the dashed lines show the actual densities. Model-implied distributions are based on the
estimated values of the cumulative distribution function of the ¯ve-year yield for a ¯ne grid of
yield values.

18Stationarity is not imposed under the risk-neutral measure, but only the A0ð3Þ exhibit non-
stationarity (in 2:64% of the MCMC draws) and the risk-neutral densities are therefore well
de¯ned for all but the A0ð3Þ model.

Can Affine Models Match the Moments in Bond Yields?

1650009-41

Q
ua

rt
. J

. o
f 

Fi
n.

 D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 D
r 

Pe
te

r 
Fe

ld
hu

tte
r 

on
 0

3/
25

/1
6.

 F
or

 p
er

so
na

l u
se

 o
nl

y.



leptokurtic than the actual distribution, the leptokurtic behavior ismodest and

less than in essentially a±nemodels, where the Feller condition is not imposed.

The bottom three graphs in the ¯gure shows that in semi-a±ne models the

shapes of the actual and risk-neutral distribution are very di®erent.Themodels

have enough degrees of freedom to ¯t the actual distributionwhile allowing the

risk-neutral distribution to be strongly skewed and leptokurtic. The shapes of

the risk-neutral distributions are similar to those in essentially a±ne models

but the skewness is even more pronounced. This suggests that in essentially

a±nemodels the risk-neutral distribution is less leptokurtic than implied solely

from the cross section because it shares shape with the actual distribution.

Consistent with this, we see that the pricing errors (re°ected in �2) are smaller

for all semi-a±ne models compared to extended and essentially a±ne models

when comparing models with the same number of volatility factors.

For the a±ne models with stochastic volatility the cross-sectional ¯t

improves as the skewness and kurtosis of yields increase. This is at odds with

the good cross-sectional ¯t of the Gaussian model��� which has zero skewness

and kurtosis ��� and suggests that only once volatility is introduced in the

model, high higher order moments improve the cross-sectional ¯t. In order to

investigate what feature of the cross-sectional dimension of the data that

leads to high third- and fourth-order moments in stochastic volatility models

Table 16 shows the average pricing errors during periods of high volatility

(the 10% days with highest EGARCH estimate of monthly volatility of the

three-year yield). For all volatility models the one-, three-, and ¯ve-year yield

is ¯tted well on average and the pricing errors are insigni¯cantly di®erent

from zero. However, a±ne stochastic volatility models have di±culty

matching the curvature of the yield curve precisely when volatility matters

the most since they signi¯cantly underestimate the two-year yield and

overestimate the four-year yield during high volatility. Independent of

whether the number of volatility factors is one, two, or three, as higher order

moments increase the ¯t of the two- and four-year yields generally improve.

From the cross section of yields it is not clear what higher moments the

risk-neutral distribution of yields have, since the answer depends on the

model within which the question is asked. Using options it is possible to

provide a model-free estimate of the skewness and kurtosis as done in Bakshi

et al. (2003) for the equity market. This would provide a model-free test of

the a±ne models considered in this paper, Gaussian models (zero skewness/

kurtosis), extended a®¯ne models (only modest skewness/kurtosis), and

semi-a±ne/essentially a±ne (any skewness/kurtosis). This is an interesting

topic for future research.
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Table 16. Average pricing errors. This table shows the average pricing errors in basis points
for the whole sample period as well as periods with high volatility. Periods of high volatility is
determined as the 10% days with highest volatility, where the volatility is an EGARCH(1,1)
estimate of monthly volatility of the three-year yield. The stars mark average pricing errors
that are signi¯cantly di®erent from zero.

Maturity 1 2 3 4 5

Whole sample period 1952:6 to 2004:12
A0ð3Þ �0.05 0.14 0.16 �0.42� 0.15

(�0.60; 0.50) (�0.37; 0.61) (�0.21; 0.52) (�0.77; �0.06) (�0.31; 0.64)
A1ð3Þ ext �0.14 0.39 �0.04 �0.48� 0.29

(�0.69; 0.43) (�0.13; 0.93) (�0.47; 0.39) (�0.92; �0.02) (�0.36; 0.86)
A1ð3Þ ess �0.11 0.30 �0.05 �0.41� 0.29

(�0.68; 0.45) (�0.13; 0.73) (�0.40; 0.31) (�0.82; �0.01) (�0.29; 0.80)
A1ð3Þ semi �0.08 0.19 �0.01 �0.36� 0.22

(�0.57; 0.44) (�0.19; 0.57) (�0.40; 0.38) (�0.74; �0.02) (�0.34; 0.71)
A2ð3Þ ext �0.18 0.45 �0.08 �0.52� 0.32

(�0.75; 0.36) (�0.09; 0.99) (�0.48; 0.35) (�1.00; �0.04) (�0.24; 0.86)
A2ð3Þ ess �0.18 0.45 �0.07 �0.51� 0.33

(�0.75; 0.38) (�0.06; 0.97) (�0.46; 0.34) (�0.94; �0.09) (�0.22; 0.85)
A2ð3Þ semi �0.01 0.06 0.06 �0.34 0.21

(�0.55; 0.57) (�0.44; 0.54) (�0.36; 0.46) (�0.75; 0.05) (�0.29; 0.70)
A3ð3Þ ext �0.02 0.26 �0.14 �0.48� 0.40

(�0.61; 0.55) (�0.30; 0.81) (�0.55; 0.27) (�0.89; �0.04) (�0.12; 0.92)
A3ð3Þ ess �0.15 0.41 �0.06 �0.51� 0.30

(�0.68; 0.41) (�0.08; 0.90) (�0.44; 0.34) (�0.88; �0.12) (�0.20; 0.83)
A3ð3Þ semi �0.09 0.20 0.02 �0.37 0.24

(�0.63; 0.47) (�0.33; 0.72) (�0.40; 0.41) (�0.80; 0.05) (�0.31; 0.81)

Periods with high volatility
A0ð3Þ 0.12 �0.66 �0.07 1.51� �1.03

(�1.58; 1.78) (�2.00; 0.74) (�1.09; 0.95) (0.50; 2.63) (�2.44; 0.42)
A1ð3Þ ext 0.90 �2.12� 0.08 2.40� �1.14

(�0.84; 2.82) (�3.48; �0.74) (�1.15; 1.33) (1.24; 3.68) (�2.85; 0.53)
A1ð3Þ ess 0.77 �2.05� 0.11 2.39� �1.15

(�0.87; 2.48) (�3.32; �0.80) (�1.01; 1.23) (1.33; 3.46) (�2.70; 0.25)
A1ð3Þ semi 0.47 �1.57� 0.17 2.07� �1.17

(�1.22; 2.22) (�2.75; �0.33) (�0.99; 1.30) (0.98; 3.08) (�2.60; 0.25)
A2ð3Þ ext 1.09 �2.55� �0.11 2.55� �0.94

(�0.69; 2.74) (�3.94; �1.16) (�1.34; 0.98) (1.35; 3.77) (�2.55; 0.53)
A2ð3Þ ess 1.02 �2.24� �0.19 2.32� �0.76

(�0.56; 2.72) (�3.65; �0.80) (�1.40; 0.96) (1.12; 3.49) (�2.32; 0.95)
A2ð3Þ semi 0.47 �1.42� 0.00 1.92� �0.93

(�1.12; 2.20) (�2.85; �0.04) (�1.14; 1.12) (0.90; 2.97) (�2.41; 0.51)
A3ð3Þ ext 0.76 �2.17� 0.35 2.58� �1.51

(�1.01; 2.56) (�3.59; �0.69) (�0.78; 1.53) (1.40; 3.78) (�3.16; 0.01)
A3ð3Þ ess 0.91 �2.23� 0.04 2.41� �1.11

(�0.80; 2.74) (�3.71; �0.75) (�1.10; 1.13) (1.28; 3.56) (�2.61; 0.39)
A3ð3Þ semi 0.65 �1.82� 0.13 2.27� �1.11

(�1.13; 2.35) (�3.18; �0.41) (�1.03; 1.29) (1.13; 3.42) (�2.64; 0.38)
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5.4. Zero lower bound

Given the recent experience of interest rates of zero, there has been a number

of papers investigating models that allow for yields close to but not below

zero.19 In the models considered in this paper, only the A3ð3Þ model with the

additional restrictions �0 � 0 and �x � 0 guarantee that the short rate is

positive, but as noted by Dai and Singleton (2003) a small probability of

negative yields is usually accepted in return for a richer correlation structure

in a±ne models with Gaussian variables. Given that recent models with a

zero-lower bound typically do not allow for analytical solutions and the

computational burden of their estimation is high, it may be worth sacri¯cing

the zero lower bound for tractability reasons if the probability of negative

interest rates is small. To test the probability of negative yiels, Table 17

shows the probability that the one- and ¯ve-year yields are negative. The

table shows that the probability of the one-year yield being negative is less

than 1% for all but the A0ð3Þ model and the probability of a negative ¯ve-

year yield is practically zero. However, in the Gaussian A0ð3Þ model the

probability of negative one-year yields is 5:98% and the corresponding

probability for the ¯ve-year yield is 3:91%, probabilities that are many times

larger than in the models with stochastic volatility.

Table 17 also shows the probability of seeing extreme values of yields,

de¯ned as yields that are higher or lower than what they have been in the

estimation period 1952–2004. Due to the skewed and leptokurtic distribu-

tions in essentially a±ne models, the probability of extreme values for the

¯ve-year yield ranges from 11:8% to 22:9%. The probabilities are high given

that we have not seen these extreme events at any time in the 52 years in the

estimation period. In contrast, extended and semi-a±ne models have prob-

abilities ranging from 2:1% to 6:7% which is a more reasonable range of

probabilities.

These results illustrate that the probability of negative yields is high for a

purely Gaussian model while it is low for any model with stochastic volatility

and the risk premium speci¯cation plays a minor role in determining this

probability. In contrast, the risk premium speci¯cation is important in the

probability of observing extreme values of yields and essentially a±ne models

have a highprobability of extremeyieldswhile extended and semi-a±nemodels

have more reasonable probabilities.

19Examples include Kim and Singleton (2012), Priebsch (2013), Wu and Xia (2014), and
Christensen and Rudebusch (2015).
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6. Conclusion

In this paper, I estimate three-factor a±ne models with di®erent risk pre-

mium speci¯cations and examine their ability to match the ¯rst four

moments of bond yields.

The tension in essentially a±ne models between ¯tting time-varying mean

and volatility also exists in extended and semi-a±ne models, although to a

lesser extent in extended models. Extended models match historical risk

premia better and the improvement increases with the number of stochastic

volatility factors, but none of the extended models with stochastic volatility

match a purely Gaussian model. However, a purely Gaussian model has no

time-varying volatility and I show that it has relatively large probabilities

of negative yields. All models capture the broad trends in historical

volatility dynamics except in the period of the Fed experiment 1979–1982.

The ability to capture time-varying volatility decreases with the number of

volatility factors and an a±ne model with one stochastic volatility factor ���
essentially, extended, or semi-a±ne ��� captures best the historical volatility

dynamics.

I document a tension in essentially and extended models in matching both

the time series and cross-sectional properties of yields. Essentially a±ne

models ¯t yields cross sectionally better than extended models but generate

historical distributions of yields that are too fat-tailed. The richer risk pre-

mium speci¯cation in extended a±ne models allows the historical distribution

of yields to be ¯tted well, but because the Feller condition is imposed ex-

tended models cannot generate the variety of yield curve shapes that essen-

tially models can generate and therefore has a worse cross-sectional ¯t.

Overall, none of the models can fully capture the variation in excess

returns and yield volatility. One potential solution to this tension is to in-

crease the number of factors. However, over¯tting is a concern when moving

beyond three factors as pointed out by Du®ee (2010). Another potential

solution is to use non-linear models as in Carr et al. (2009) and Feldhütter
et al. (2015). In a non-linear extension of a three-factor Gaussian model,

Feldhütter et al. (2015) show that the variation in excess returns and yield

volatility can be matched.
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Appendix A. Three-Factor A±ne Models

In this section, I review the canonical representation of all three-factor

a±ne models. For all models the process X is restricted to be stationary

under P which is ensured by restricting the real part of the eigenvalues of the

mean-reversion matrix to be positive.

A.1. A0(3)

The representation of the A0ð3Þ model is

d

X 1
t

X 2
t

X 3
t

2
64

3
75 ¼ �

K Q
1 ð1; 1Þ 0 0

K Q
1 ð2; 1Þ K Q

1 ð2; 2Þ 0

K Q
1 ð3; 1Þ K Q

1 ð3; 2Þ K Q
1 ð3; 3Þ

2
664

3
775

X 1
t

X 2
t

X 3
t

2
64

3
75dt þ d ~W ðtÞ:

The matrix K1 is lower triangular to ensure identi¯cation. The essentially

a±ne market price of risk is

S
1
2
t �t ¼

�1ð1Þ þ �2ð1; 1ÞX 1
t þ �2ð1; 2ÞX 2

t þ �2ð1; 3ÞX 3
t

�1ð2Þ þ �2ð2; 1ÞX 1
t þ �2ð2; 2ÞX 2

t þ �2ð2; 3ÞX 3
t

�1ð3Þ þ �2ð3; 1ÞX 1
t þ �2ð3; 2ÞX 2

t þ �2ð3; 3ÞX 3
t

0
BBB@

1
CCCA:

The extended a±ne market price of risk does not extend the °exibility of the

essentially a±ne market price of risk. For the purpose of identi¯cation the

vector �x in Eq. (2) has to be non-negative.

A.2. A1(3)

The A1ð3Þ has the representation

d

X 1
t

X 2
t

X 3
t

2
64

3
75 ¼

K Q
0 ð1Þ
0

0

2
64

3
75�

K Q
1 ð1; 1Þ 0 0

K Q
1 ð2; 1Þ K Q

1 ð2; 2Þ K Q
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1 ð3; 2Þ K Q
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For the process to be well de¯ned the restrictions K Q
0 ð1Þ > 0, �2ð1Þ > 0,

�3ð1Þ > 0, and K Q
1 ð1; 1Þ > 0 apply.20 For identi¯cation the second and third

element of �x in Eq. (2) has to be non-negative.

The extended a±ne market price of risk is given as

ðA:1Þ

For X to be well de¯ned under P �1ð1Þ has to satisfy the constraint

�1ð1Þ � 1
2 �K Q

0 ð1Þ.
The extended a±ne model allows �1ð1Þ to be non-zero in contrast to the

essentially a±ne model.21 Since the essentially a±ne model nests the

completely a±ne, the extended a±ne model has a larger number of risk

premium parameters than the completely a±ne. The cost of this °exibility is

that the inequality K Q
0 ð1Þ > 1

2 has to be satis¯ed in contrast to the inequality

K Q
0 ð1Þ > 0 in both the essentially and completely a±ne model. Because of

this constraint the extended a±ne model nests neither the essential nor the

completely a±ne models.

A.3. A2(3)

The representation of the A2ð3Þ model is22

d

X 1
t

X 2
t

X 3
t

2
64

3
75 ¼

K Q
0 ð1Þ

K Q
0 ð2Þ
0

2
64

3
75�

K Q
1 ð1; 1Þ K Q

1 ð1; 2Þ 0

K Q
1 ð2; 1Þ K Q

1 ð2; 2Þ 0

K Q
1 ð3; 1Þ K Q

1 ð3; 2Þ K Q
1 ð3; 3Þ

2
664

3
775

X 1
t

X 2
t

X 3
t

2
64

3
75

0
BB@

1
CCAdt

þ diag

ffiffiffiffiffiffiffi
X 1

t

p
ffiffiffiffiffiffiffi
X 2

t

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ �3ð1ÞX 1

t þ �3ð2ÞX 2
t

p
2
664

3
775

0
BB@

1
CCAd ~W ðtÞ

20This parameterization is used in Cheridito et al. (2007) and is a consequence of employing the

invariant a±ne transformation TAXðtÞ ¼ XðtÞ þ 0;
k22 k23
k32 k33

� ��1 k21
k31

� �� � 0
to the canonical

A1ð3Þmodel in Dai and Singleton (2000). The transformation leaves all parameters unchanged

except � and �. The condition K Q
1 ð1; 1Þ > 0 is due to the condition ½ðK Q

1 Þ�1K Q
0 �1 > 0.

21St�1 þ I ��2Xt in Eq. (6) can be reparameterized as in Eq. (A.1) with �1ð1Þ ¼ 0. In the rest
of the paper, I will use the latter parametrization for the essentially a±ne models for easier
comparison of risk premium parameter estimates.

22The a±ne transformation TAXðtÞ ¼ XðtÞ þ 0; 0;� K Q
0 ð3Þ

K Q
1 ð3;3Þ

� � 0
is performed on the canonical

A2ð3Þ model of Dai and Singleton (2000).
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with restrictions K Q
0 ðiÞ > 0; �3ðiÞ > 0; ½ðK Q

1 Þ�1K Q
0 �i > 0, i ¼ 1; 2, K Q

1 ð2; 1Þ
� 0, K Q

1 ð1; 2Þ � 0, and �xð3Þ > 0.

The extended market price of risk is given as

ðA:2Þ

The risk premium parameters are subject to the constraints �1ðiÞ � 1
2 �

K Q
0 ðiÞ; ½ðK P

1 Þ�1K P
0 �i > 0, i¼ 1;2;�2ð1;2Þ�K Q

1 ð1;2Þ, and �2ð2;1Þ �K Q
1 ð1;2Þ.

The four boxed parameters are the extra parameters the extended a±nemodel

provides in comparison with the essentially a±ne model.

The added restrictions the extended a±ne model places on the Q-para-

meters in contrast to the essentially and completely a±ne models are

K Q
0 ðiÞ > 1

2 ; i ¼ 1; 2.

A.4. A3(3)

The representation of the A3ð3Þ model is

d

X 1
t

X 2
t

X 3
t

2
64

3
75 ¼

K Q
0 ð1Þ

K Q
0 ð2Þ

K Q
0 ð3Þ

2
664

3
775�

K Q
1 ð1; 1Þ K Q

1 ð1; 2Þ K Q
1 ð1; 3Þ

K Q
1 ð2; 1Þ K Q

1 ð2; 2Þ K Q
1 ð2; 3Þ

K Q
1 ð3; 1Þ K Q

1 ð3; 2Þ K Q
1 ð3; 3Þ

2
664

3
775

X 1
t

X 2
t

X 3
t

2
64

3
75

0
BB@

1
CCAdt

þ diag

ffiffiffiffiffiffiffi
X 1

t

p
ffiffiffiffiffiffiffi
X 2

t

p
ffiffiffiffiffiffiffi
X 3

t

p
2
664

3
775

0
BB@

1
CCAd ~W ðtÞ

and restrictions for existence are K Q
1 ði; jÞ � 0; i; j ¼ 1; . . . ; 3; j 6¼ i, K Q

0 > 0,

and ðK Q
1 Þ�1K Q

0 > 0. The extended market price of risk is given as

ðA:3Þ

subject to the constraints �2ði; jÞ � K Q
1 ði; jÞ; i; j ¼ 1; . . . ; 3; j 6¼ i, �1 >

1
2 �

K Q
0 , and ðK P

1 Þ�1K P
0 > 0.

The extended a±ne model has the nine boxed parameters extra compared

to the essential and completely a±ne models. The necessary extra conditions

in the extended model are K Q
0 > 1

2.
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Appendix B. Implementation Details

B.1. Model estimation

As explained in the text draws violating parameter constraints can simply be

discarded according to Gelfand et al. (1992). However, in the extended a±ne

model this procedure leads to practically rejecting every draw and therefore

the RW-MH algorithm is used when sampling these parameters in the ex-

tended a±ne models.23

The e±ciency of the RW-MH algorithm depends crucially on the variance

of the proposed normal distribution. If the variance is too low, the Markov

chain will accept nearly every draw and converge very slowly while it will

reject a too high portion of the draws if the variance is too high. I therefore do

an algorithm calibration and adjust the variance in the ¯rst eight million

draws in the MCMC algorithm. Within each parameter block (K Q
0 ;K

Q
1 ; �;

�; d;X ; and in the extended a±ne models �1 and �2) the variance of the

individual parameters is the same, while across parameter blocks the variance

may be di®erent. Roberts et al. (1997) recommend acceptance rates close to
1
4 for models of high dimension and therefore the standard deviation during

the algorithm calibration is chosen as follows: Every 100th draw the accep-

tance ratio of each parameter in a block is evaluated. If it is less than 5%

the standard deviation is doubled while if it is more than 40% it is cut in

half. This step is prior to the burn-in period since the convergence results

of RW-MH only applies if the variance is constant (otherwise the Markov

property of the chain is lost).

The normal distribution of the risk premium parameters are found as

follows. According to Bayes' theorem

pð�j�n�;X ;Y Þ / pðY j�;XÞpð�j�n�;XÞ
/ pðX j�Þpð�j�n�Þ

/
YN
i¼1

exp � 1

2�t

XT
t¼1

½�Xt � 
P
t�1�t �2i

½St�1�ii

 !
:

23According to Gelfand et al. (1992) a risk premium element � can be drawn conditional on
the parameter constraint. For example, an element of �1 is restricted to ½a;1Þ due to the
multivariate Feller condition. Denoting F as the unconditional distribution function of � and
drawing a uniform random variable U , � can be drawn as � ¼ F �1½FðaÞ þ Uð1� FðaÞÞ�.
However, this procedure is not computationally feasible since the constrained interval lies
far in the tail of the unconditional distribution and therefore FðaÞ cannot reliably be
computed.
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In the last line it is used that the priors are assumed to be independent

and proportional to a constant such that the data dominate the results.

Furthermore


P
t ¼ K Q

0 �K Q
1 Xt þ

ffiffiffiffiffi
St

p
�t

¼ K Q
0 �K Q

1 Xt þ �0

ffiffiffiffiffi
St

p þ �1 þ �2Xt ;

so in the expression ½�Xt � 
P
t�1�t �i all the individual elements � ind in the

vectors �0 and �1 and matrix �2 can be written as at�
ind � bt ,

pð� ind j�n� ind ;X ;Y Þ / exp � 1

2�t

XT
t¼1

ðat� ind � btÞ2
½St�1�ii

 !
:

Using the result in Frühwirth-Schnatter and Geyer (1998, p. 10) I have that

pð� ind j�n� ind ;X ;Y Þ is a normal distribution with

Eð� indÞ ¼ Qm;

varð� indÞ ¼ Q;

where

m ¼
XT
t¼1

atbt
�t½St �ii

;

Q�1 ¼
XT
t¼1

a 2
t

�t½St �ii
:

The conditional of Xt depends only on neighboring Xs and the sampling of

the latent process X can for computational speed be done in two steps. First

X0;X2; . . . are sampled and second X1;X3; . . . are sampled. Of the total com-

puting time, solving theODEs (4)–(5) takes up 70–80% of the computing time.

All random numbers in the estimation are drawn from Matlab 7.0's gen-

erator which is based on Marsaglia and Zaman (1991)'s algorithm. The

generator has a period of almost 21430 and therefore the number of random

draws in the estimation is not anywhere near the period of the random

number generator.

B.2. Simulating from models

The regression coe±cients for the Campbell–Shiller and volatility regressions

are simulated as follows. For every MCMC draw the regression coe±cients

are calculated by repeating a simulation of 631 months 100 times, calculating

the regression coe±cients for every draw, and taking the average regression

coe±cient over the 100 simulations. Ideally, this should be repeated for every
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MCMC draw to get the distribution of regression coe±cients but since this is

too time consuming, this is done for every 50th MCMC draw. This amounts

to an average over 400 averages ��� averaging over a total of 40,000 simu-

lations. To assure that this procedure yields accurate results the following

check is performed for the Campbell–Shiller regression coe±cients. I simulate

once from every MCMC draw and average over the 20,000 simulations. This

should give approximately the same coe±cient estimates while giving larger

con¯dence bands. The estimates for the A3ð3Þ essentially a±ne model from

this procedure only di®ers from the ¯rst procedure on the third decimal and

therefore supports that the simulation procedure is accurate.

Unconditional moments and probabilities are calculated using the afore-

mentioned simulation procedure with the exception that for every MCMC

draw the estimates are based on one simulation of 30,000 years instead of 100

simulations of 631 months.

Appendix C. Conditional Moments of the CIR Process

According to Cox et al. (1985), the CIR process

dX ¼ kð�� XÞdt þ �
ffiffiffiffi
X

p
dW

has a density of the conditional distribution of Xtþ� jXt given by

f ðXtþ� jXtÞ ¼ ce�u�v
v

u

� � q
2
Iqð2ðuvÞ 1

2Þ;

where

c ¼ 2k

�2ð1� e�k�Þ ;
u ¼ cXte

�k� ;

v ¼ cXtþ� ;

q ¼ 2k�

�2
� 1;

and Iqð�Þ is the modi¯ed Bessel function of the ¯rst kind of order q. It is seen

that 2v has a non-central �2 distribution with f ¼ 4k�
� 2 degrees of freedom and

non-centrality parameter � ¼ 2u. The mean, variance, skewness, and excess

kurtosis are

EðXtþ�Þ ¼
1

2c
ðf þ �Þ ¼ �ð1� e�k�Þ þ Xte

�k� ;

V ðXtþ�Þ ¼
1

4c2
ð2f þ 4�Þ ¼ �2ð1� e�k�Þ2

2k
�þ �2e�k�ð1� e�k�Þ

k
Xt;
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skewðXtþ�Þ ¼
2

3
2ðf þ 3�Þ
ðf þ 2�Þ 3

2

¼ 2
3
2

4k�
� 2 þ 6cXte

�k�

ð4k��2 þ 4cXte�k�Þ 3
2

¼ �ffiffiffi
k

p 4�þ 12
1�e�k� Xte

�k�

ð2�þ 4
1�e�k� Xte�k�Þ 3

2

¼
ffiffiffi
2

p
�ffiffiffiffiffi
k�

p
2
ffiffiffi
2

p þ 3ffiffi
2

p K

ð2þKÞ 3
2

;

exkurtðXtþ�Þ ¼
12ðf þ 4�Þ
ðf þ 2�Þ2 ¼ 12

4k�
� 2 þ 8cXte

�k�

ð4k��2 þ 4cXte�k�Þ2

¼ 12�2

k

4�þ 16
1�e�k� Xte

�k�

ð4�þ 8
1�e�k� Xte�k�Þ2 ¼ 3�2

k�

4þ 4K

ð2þKÞ2 ;

where

K ¼ 4

ek� � 1

Xt

�
:

It is easily seen that skewness and excess kurtosis are monotone decreasing

in K so they are monotone increasing in � when X is stationary (k > 0). As

� ! 0 skewness and excess kurtosis go to zero and as � ! 1 they go to the

skewness and excess kurtosis of the unconditional distribution of X ���
ffiffiffiffiffiffi
2�2

k�

q
and 3� 2

k� .
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