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Abstract

We introduce a reduced-form term structure model with closed-form solutions for
yields where the short rate and market prices of risk are nonlinear functions of
Gaussian state variables. The nonlinear model with three factors matches the time-
variation in expected excess returns and yield volatilities of US Treasury bonds from
1961 to 2014. Yields and their variances depend on only three factors, yet the model
exhibits features consistent with Unspanned Risk Premia (URP) and Unspanned
Stochastic Volatility (USV).
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1. Introduction

The US Treasury bond market is a large and important financial market. Policy makers, in-

vestors, and researchers need models to disentangle market expectations from risk pre-

miums, and estimate expected returns and Sharpe ratios, both across maturity and over

time. The most prominent class of models are affine models. However, there are a number

* We would like to thank Kerry Back, Greg Bauer, David Chapman, Mike Chernov, Joao Cocco, Alex

David, Greg Duffee, Paul Ehling, Michael Gallmeyer, Francisco Gomes, Rodrigo Guimaraes, Burton

Hollifield, Scott Joslin, Christian Julliard, Ralph Koijen, Philippe Mueller, Andreas Pick, Christian

Opp, Giuliano De Rossi, Glenn D. Rudebusch, David Schröder, Ivan Shaliastovich, Andrea Vedolin,
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of empirical facts documented in the literature that these models struggle with matching

simultaneously: a) excess returns are time-varying, b) a part of expected excess returns is

unspanned by the yield curve, c) yield variances are time varying, and d) a part of yield vari-

ances is unspanned by the yield curve.1 Affine models have been shown to match each of

these four findings separately, but not simultaneously and only by increasing the number of

factors beyond the standard level, slope, and curvature factors.2

We introduce an arbitrage-free dynamic term structure model where the short rate and

market prices of risk are nonlinear functions of Gaussian state variables. We provide

closed-form solutions for bond prices and since the factors are Gaussian our nonlinear

model is as tractable as a standard Gaussian model. We show that the model can capture

all four findings mentioned above simultaneously and it does so with only three factors

driving yields and their variances. The value of having few factors is illustrated by Duffee

(2010) who estimates a five-factor Gaussian model to capture time variation in expected re-

turns and finds huge Sharpe ratios due to overfitting.

We use a monthly panel of five zero-coupon Treasury bond yields and their realized

variances from 1961 to 2014 to estimate the nonlinear model with three factors. To com-

pare the implications of the nonlinear model with those from the standard class of affine

models, we also estimate three-factor affine models with no or one stochastic volatility fac-

tor, the essentially affine A0ð3Þ and A1ð3Þmodels.

We first assess the ability of the nonlinear model to predict excess bond returns in sam-

ple and regress realized excess returns on model-implied expected excess return. The aver-

age R2 across bond maturities and holding horizons is 27% for the nonlinear model, 6.5%

for the A1ð3Þ model, 8% for the A0ð3Þ model, and no more than 15% for any affine model

in which expected excess returns are linear functions of yields. Campbell and Shiller (1991)

document a positive relation between the slope of the yield curve and expected excess re-

turns, a finding that affine models with stochastic volatility have difficulty matching (see

Dai and Singleton, 2002). In simulations, we show that the nonlinear model can capture

this positive relation.

There is empirical evidence that a part of expected excess bond returns is not spanned

by linear combinations of yields, a phenomenon we refer to as Unspanned Risk Premia

(URP).3 URP arises in our model due to a nonlinear relation between expected excess re-

turns and yields. To quantitatively explore this explanation, we regress expected excess

1 Although the literature is too large to cite in full, examples include Campbell and Shiller (1991) and

Cochrane and Piazzesi (2005) on time-varying excess returns, Duffee (2011b) and Joslin, Priebsch,

and Singleton (2014) on unspanned expected excess returns, Jacobs and Karoui (2009) and Collin-

Dufresne, Goldstein, and Jones (2009) on time-varying volatility, and Collin-Dufresne and Goldstein

(2002) and Andersen and Benzoni (2010) on Unspanned Stochastic Volatility.

2 Dai and Singleton (2002), and Tang and Xia (2007) find that the only affine three-factor model that

can capture time-variation in expected excess returns is the Gaussian model that has no stochas-

tic volatility. Duffee (2011b), Wright (2011), and Joslin, Priebsch, and Singleton (2014) capture

unspanned expected excess in four- and five-factor affine models that have no stochastic volatility.

Unspanned Stochastic Volatility is typically modeled by adding additional factors to the standard

three factors (Collin-Dufresne, Goldstein, and Jones, 2009; Creal and Wu, 2015). See also Dai and

Singleton (2003) and Duffee (2010) and the references therein.

3 See Ludvigson and Ng (2009), Cooper and Priestley (2009), Cieslak and Povala (2015), Duffee

(2011b), Joslin, Priebsch, and Singleton (2014), Chernov and Mueller (2012), and Bauer and

Rudebusch (2017).
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returns implied by the nonlinear model on its principal components (PCs) of yields and find

that the first three PCs explain 67–72% of the variation in expected excess returns.

Furthermore, the regression residuals correlate with expected inflation in the data (meas-

ured through surveys), not because inflation has any explanatory power in the model but

because it happens to correlate with “the amount of nonlinearity.” Duffee (2011b); Wright

(2011); and Joslin, Priebsch, and Singleton (2014) use five-factor Gaussian models where

one or two factors that are orthogonal to the yield curve explain expected excess returns

and are related to expected inflation. We capture the same phenomenon with a nonlinear

model that retains a parsimonious three-factor structure to price bonds and yet allows for

time variation in volatilities.

The nonlinear and A1ð3Þ model can capture the persistent time variation in volatilities

and the high volatility during the monetary experiment in the early 80s. However, the

two models have different implications for the cross-sectional and predictive distribution

of yield volatility. In the nonlinear model more than one factor drives the cross-sectional

variation in yield volatilities while by construction the A1ð3Þ model only has one.

Moreover, in the nonlinear model, the probability of a high volatility scenario increases

with the monetary experiment and remains high during the Greenspan era even though vol-

atilities came down significantly. This finding resembles the appearance and persist-

ence of the equity option smile since the crash of 1987. In contrast, the distribution of

future volatility in the A1ð3Þ model is similar before and after the monetary experiment.

The volatility in the Gaussian A0ð3Þ model is constant and thus this model overesti-

mates volatility during the Greenspan era and underestimates it during the monetary

experiment.

There is a large literature suggesting that interest rate volatility risk cannot be hedged by

a portfolio consisting solely of bonds; a phenomenon referred to by Collin-Dufresne and

Goldstein (2002) as Unspanned Stochastic Volatility (USV). The empirical evidence sup-

porting USV typically comes from a low R2 when regressing a measure of volatility on

interest rates.4 To test the ability of the nonlinear model to capture the empirical evidence

on USV, we use the methodology of Andersen and Benzoni (2010) and regress the model-

implied variance of yields on the PCs of model-implied yields. The first three PCs explain

42–44%, which is only slightly higher than in the data where they explain 30–35% of the

variation in realized yield variance. If we include the fourth and fifth PC, these numbers in-

crease to 55–62% and 40–43%, respectively. Hence, our nonlinear model quantitatively

captures the R2s in USV regressions in the data. In contrast, since there is a linear relation

between yield variance and yields in standard affine models, the first three PCs explain

already 100% in the A1ð3Þmodel.5

The standard procedure in the reduced-form term structure literature is to specify the

short rate and the market prices of risk as functions of the state variables. Instead, we model

4 Papers on this topic include Collin-Dufresne and Goldstein (2002), Heidari and Wu (2003), Fan,

Gupta, and Ritchken (2003), Li and Zhao (2006), Carr, Gabaix, and Wu (2009), Andersen and Benzoni

(2010), Bikbov and Chernov (2009), Joslin (2014), and Creal and Wu (2015).

5 Collin-Dufresne and Goldstein (2002) introduce knife edge parameter restrictions in affine models

such that volatility state variable(s) do not affect bond pricing, the so-called USV models. The most

commonly used USV models—the A1ð3Þ and A1ð4Þ USV models—have one factor driving volatility

and this factor is independent of yields. These models generate zero R2s in USV regressions incon-

sistent with the empirical evidence.
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the functional form of the stochastic discount factor (SDF) directly by multiplying the SDF

from a Gaussian term structure model with the term 1þ ce�bX, where b and c are param-

eters and X is the Gaussian state vector. This functional form is a special case of the SDF

that arises in many equilibrium models in the literature. In such models, the SDF can be

decomposed into a weighted average of different representative agent models. Importantly,

the weights on the different models are time-varying and this is a source of time-varying

risk premia and volatility of bond yields.

Our paper is not the first to propose a nonlinear term structure model. Dai, Singleton,

and Yang (2007) estimate a regime-switching model and show that excluding the monetary

experiment in the estimation leads their model to pick up minor variations in volatility. In

contrast, the nonlinear model can pick up states that did not occur in the sample used to es-

timate the model. Specifically, we estimate the model using a sample that excludes the mon-

etary experiment and find that it still implies a significant probability of a strong increase in

volatility. Furthermore, while the Gaussian model is a special case of both models our non-

linear model only increases the number of parameters from 23 to 27 whereas the regime-

switching model in Dai, Singleton, and Yang (2007) has fifty-six parameters. Quadratic

term structure models have been proposed by Ahn, Dittmar, and Gallant (2002) and

Leippold and Wu (2003) among others, but Ahn, Dittmar, and Gallant (2002) find that

quadratic term structure models are not able to generate the level of conditional volatility

observed for short- and intermediate-term bond yields. Ahn et al. (2003) propose a class of

nonlinear term structure models based on the inverted square-root model of Ahn and Gao

(1999), but in contrast to our nonlinear model they do not provide closed-form solutions

for bond prices. Dai, Le, and Singleton (2010) develop a class of discrete time models that

are affine under the risk neutral measure, but show nonlinear dynamics under the historical

measure. They illustrate that the model encompasses many equilibrium models with recur-

sive preferences and habit formation. Carr, Gabaix, and Wu (2009) use the linearity gener-

ating framework of Gabaix (2009) to price swaps and interest rate derivatives. Similarly, in

concurrent work Filipovic, Larsson, and Trolle (2015) introduce a linear-rational frame-

work to price bonds and interest rate derivatives. Both approaches lead to closed-form solu-

tions of discount bonds, but their pricing framework is based on the potential approach of

Rogers (1997) while our approach is based on a large class of equilibrium models discussed

in Appendix B.6

The rest of the paper is organized as follows. Section 2 motivates and describes the

model. Section 3 estimates the model and Section 4 presents the empirical results. In

Section 5, we estimate a one-factor version of the nonlinear model and describe how nonli-

nearity works in this simple case, while Section 6 concludes.

2. A Nonlinear Term Structure Model

In this section, we present a nonlinear model of the term structure of interest rates. We first

motivate the model by presenting regression evidence for nonlinearities in excess returns

and yield variances in Section 2.1 and then we present the model in Section 2.2.

6 It is also possible to combine the general exponential-type SDF in our paper with the affine-type

SDF in Filipovic, Larsson, and Trolle (2015) to get an exponential polynomial-type SDF similar to the

setting of Chen and Joslin (2012).
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2.1 Motivating Regression Evidence

In Panel A of Table I, we regress yearly excess returns measured on a monthly basis for the

period 1961–2014 on the first three PCs of yields and product combinations of the PCs.

Specifically, the dependent variable is the average 1-year excess return computed over US

Treasury bonds with a maturity of 2, 3, 4, and 5 years (we explain the details of the data in

Section 3.1). As independent variables, we first include all terms that are a product of up to

three terms of the first three PCs (in short PC1, PC2, and PC3). We then exclude terms with

the lowest t-statistics one-by-one until only significant terms remain. The first row of Panel

A shows the result. There are only three significant terms in the regression and they are all

nonlinear. The second row shows the regression when we include only the first three PCs,

the linear relation implied by affine models, and we see that the R2 of 16% is substantially

lower than the R2 of 29% in the first regression. Finally, the third row shows that the linear

terms add almost no explanatory power to the first regression.

Panel B in Table I shows similar regressions with the average excess return replaced by

the average monthly realized yield variance as dependent variable (again, we leave the de-

tailed explanation of how we calculate realized variance to Section 3.1). The first regression

in Panel B shows the regression result when the independent variables are products of up to

three terms of PC1, PC2, and PC3, after excluding insignificant terms as in Panel A. None of

the linear terms are significant and the five significant nonlinear terms generate an R2 of

55%. Row 2 shows that a regression with only the first three PCs, the linear relation

implied by affine models, yields a substantially lower R2 of 34% and row 3 shows that the

linear terms do not raise the R2 when included in the first regression in Panel B.

These regressions show that there is a nonlinear relation both between yields and excess

returns and between yields and yield variances. While the R2s in the nonlinear regressions

are informative about the importance of nonlinearity, overfitting and collinearity limits the

ability to pin down the precise nonlinear relation. In particular, when running the regres-

sions for each bond maturity individually it is rare that the same set of nonlinear terms is

significant. This evidence suggests that we need a parsimonious nonlinear model to study

the nonlinearities in the first and second moments of bond returns, which we present in the

next section.

2.2 The Model

Uncertainty is represented by a d-dimensional Brownian motion WðtÞ ¼ ðW1ðtÞ; . . .;

WdðtÞÞ0. There is a d-dimensional Gaussian state vector X(t) that follows the dynamics

dXðtÞ ¼ jð �X�XðtÞÞdt þ RdWðtÞ; (1)

where �X is d-dimensional and j and R are d�d-dimensional.

2.2.a. The stochastic discount factor

We assume that there is no arbitrage and that the strictly positive SDF is

MðtÞ ¼M0ðtÞð1þ ce�b0XðtÞÞ; (2)

where c denotes a nonnegative constant, b a d-dimensional vector, and M0ðtÞ a strictly posi-

tive stochastic process.

Equation (2) is a key departure from standard term structure models (Vasicek, 1977;

Cox, Ingersoll, and Ross, 1985; Duffie and Kan, 1996; Dai and Singleton, 2000). Rather
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than specifying the short rate and the market price of risk, which in turn pins down the

SDF, we specify the functional form of the SDF directly.7 This approach is motivated by

equilibrium models where the SDF is a function of structural parameters and thus the risk-

free rate and market price of risk are interconnected. Moreover, we show in Appendix B

that the SDF specified in Equation (2) is a special case of the SDF in many popular equilib-

rium models.

To keep the model comparable to the existing literature on affine term structure models,

we introduce a base model for which M0ðtÞ is the SDF. The dynamics of M0ðtÞ are

dM0ðtÞ
M0ðtÞ

¼ �r0ðtÞdt � K0ðtÞ0dWðtÞ; (3)

Table I. Nonlinearities in expected excess returns and realized variances

This table shows coefficients, standard errors (in brackets), and R2s from regressions of realized

1-year log excess bond returns (Panel A) and realized yield variances (Panel B), averaged over

bond maturities two to five in Panel A and one to five in Panel B, on three different sets of yield

PCs and powers thereof. The independent variables in the first row of both panels are obtained

by first considering all product combinations of the first three PCs up to and including order

three and excluding every variable with the lowest t-statistic until only significant variables re-

main. The monthly excess returns, realized variances, and PCs are calculated using daily zero-

coupon bond yield data from 1961:07 to 2014:04. The bond maturities are ranging from 1 to 5

years and the data are obtained from Gurkaynak, Sack, and Wright (2007). The number of ob-

servations is 622 for the predictive regressions in Panel A and 634 for the contemporaneous re-

gressions in Panel B. All variables are standardized and standard errors are computed using

the Hansen and Hodrick (1980) correction with twelve lags in Panel A and the Newey and West

(1987) correction with twelve lags in Panel B. ** and * indicate statistical significance at the 1%

and 5% levels, respectively.

Panel A: 1-Year average excess bond returns

PC1 PC2 PC3 PC1PC2 PC3
1 PC3

2 R2

�0:37��
ð0:09Þ

0:40��
ð0:11Þ

0:33��
ð0:08Þ

0.29

0:07
ð0:13Þ

0:39��
ð0:12Þ

�0:05
ð0:11Þ

0.16

�0:14
ð0:17Þ

0:10
ð0:14Þ

�0:04
ð0:10Þ

�0:33��
ð0:10Þ

0:49��
ð0:16Þ

0:26�
ð0:11Þ

0.30

Panel B: Realized average yield variance

PC1 PC2 PC3 PC2
1 PC1PC3 PC2PC3 PC3

1 PC1PC2PC3 R2

0:12��
ð0:04Þ

�0:12�
ð0:05Þ

�0:18��
ð0:06Þ

0:39��
ð0:07Þ

�0:34��
ð0:05Þ

0.55

0:48��
ð0:12Þ

�0:10
ð0:09Þ

0:32��
ð0:09Þ

0.34

0:10
ð0:14Þ

0:04
ð0:05Þ

0:04
ð0:06Þ

0:14
ð0:08Þ

�0:10
ð0:05Þ

�0:16�
ð0:07Þ

0:30�
ð0:15Þ

�0:34��
ð0:08Þ

0.55

7 Constantinides (1992), Rogers (1997), Gabaix (2009), Carr, Gabaix, and Wu (2009), and Filipovic,

Larsson, and Trolle (2015) also specify the functional form of the SDF directly and provide closed-

form solutions for bond prices.

342 P. Feldhütter et al.

D
ow

nloaded from
 https://academ

ic.oup.com
/rof/article-abstract/22/1/337/2389555 by C

openhagen Business School user on 29 O
ctober 2018



where r0ðtÞ and K0ðtÞ are affine functions of the state vector X(t). Specifically,

r0ðtÞ ¼ q0;0 þ q00;XXðtÞ; (4)

K0ðtÞ ¼ k0;0 þ k0;XXðtÞ; (5)

where q0;0 is a scalar, q0;X and k0;0 are d-dimensional vectors, and k0;X is a d�d-dimen-

sional matrix. It is well known that bond prices in the base model belong to the class of

Gaussian term structure models (Dai and Singleton, 2002; Duffee, 2002) with essentially

affine risk premia. If c or every element of b is zero, then the nonlinear model collapses to

the Gaussian base model. We now provide closed-form solutions for bond prices in the non-

linear model.

2.2.b. Closed-form bond prices

Let P(t, T) denote the price at time t of a zero-coupon bond that matures at time

T. Specifically,

Pðt;TÞ ¼ Et
MðTÞ
MðtÞ

� �
: (6)

We show in the next theorem that the price of a bond is a weighted average of bond prices

in artificial economies that belong to the class of essentially affine Gaussian term structure

models.

Theorem 1. The price of a zero-coupon bond that matures at time T is

Pðt;TÞ ¼ sðtÞP0ðt;TÞ þ ð1� sðtÞÞP1ðt;TÞ; (7)

where

sðtÞ ¼ 1

1þ ce�b0XðtÞ 2 ð0; 1� (8)

Pnðt;TÞ ¼ eAnðT�tÞþBnðT�tÞ0XðtÞ: (9)

The coefficient AnðT � tÞ and the d-dimensional vector BnðT � tÞ solve the ordinary differ-

ential equations

dAnðsÞ
ds

¼ 1

2
BnðsÞ0RR0BnðsÞ þ BnðsÞ0 j �X� Rkn;0

� �
� qn;0; Anð0Þ ¼ 0; (10)

dBnðsÞ
ds

¼ � jþ Rkn;X

� �0
BnðsÞ � qn;X; Bnð0Þ ¼ 0d; (11)

where

qn;0 ¼ q0;0 þ nb0j �X� nb0Rk0;0 �
1

2
n2b0RR0b; (12)

qn;X ¼ q0;X � nj0b� nk0;X
0R0b; (13)

kn;0 ¼ k0;0 þ nR0b; (14)
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kn;X ¼ k0;X: (15)

The proof of this theorem is given in Appendix A where we provide a proof for a more

general class of nonlinear models and also show how our nonlinear model is related to the

class of reduced-form asset pricing model presented in Duffie, Pan, and Singleton (2000)

and Chen and Joslin (2012). To provide some intuition, we define M1ðtÞ ¼ ce�b0XðtÞM0ðtÞ
and rewrite the bond pricing Equation (6) using the fact that sðtÞ ¼M0ðtÞ=MðtÞ ¼
1�M1ðtÞ=MðtÞ. Specifically,

Pðt;TÞ ¼ sðtÞEt
M0ðTÞ
M0ðtÞ

� �
þ ð1� sðtÞÞEt

M1ðTÞ
M1ðtÞ

� �
: (16)

Applying Ito’s lemma to M1ðtÞ leads to

dM1ðtÞ
M1ðtÞ

¼ �r1ðtÞdt � K1ðtÞ0dWðtÞ; (17)

where r1ðtÞ and K1ðtÞ are affine functions of the state vector X(t). Specifically,

r1ðtÞ ¼ q1;0 þ q01;XXðtÞ; (18)

K1ðtÞ ¼ k1;0 þ k1;XXðtÞ; (19)

where q1;0; q1;X; k1;0, and k1;X are given in Equations (12), (13), (14), and (15), respect-

ively. Hence, both expectations in Equation (16) are equal to bond prices in artificial econo-

mies with discount factors M0ðtÞ and M1ðtÞ, respectively. These bond prices belong to the

class of essentially affine term structure models and hence P(t, T) can be computed in closed

form.

2.2.c. The short rate and the price of risk

Applying Ito’s lemma to Equation (2) leads to the dynamics of the SDF:

dMðtÞ
MðtÞ ¼ �rðtÞdt � KðtÞ0dWðtÞ; (20)

where both the short rate r(t) and the market price of risk KðtÞ are nonlinear functions

of the state vector X(t) given in Equations (21) and (22), respectively. The short rate is

given by

rðtÞ ¼ sðtÞr0ðtÞ þ ð1� sðtÞÞr1ðtÞ: (21)

Our model allows the short rate to be nonlinear in the state variables without losing the

tractability of closed-form solutions of bond prices and a Gaussian state space.8

The d-dimensional market price of risk is given by

KðtÞ ¼ sðtÞK0ðtÞ þ ð1� sðtÞÞK1ðtÞ: (22)

Equation (22) shows that even if the market prices of risk in the base model are constant,

the market prices of risks in the general model are stochastic due to variations in the weight

8 Chan et al. (1992), Ait-Sahalia (1996a, 1996b), Stanton (1997), Pritsker (1998), Chapman and Pearson

(2000), Ang and Bekaert (2002), and Jones (2003) study the nonlinearity of the short rate. Jermann

(2013) and Richard (2013) study nonlinear term structure models, but they do not obtain closed-

form solutions for bond prices.
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s(t). When s(t) approaches zero or one, then KðtÞ approaches the market price of risk of an

essentially affine Gaussian model.

2.2.d. Expected return and volatility

We know that the bond price is a weighted average of exponential affine bond prices (see

Equation (7)). Hence, variations of instantaneous bond returns are due to variations in the

two artificial bond prices P0ðt;TÞ and P1ðt;TÞ and due to variations in the weight s(t).

Specifically, the dynamics of the bond price P(t, T) are

dPðt;TÞ
Pðt;TÞ ¼ rðtÞ þ eðt;TÞð Þdt þ rðt;TÞ0dWðtÞ; (23)

where e(t, T) denotes the instantaneous expected excess return and rðt;TÞ denotes the local

volatility vector of a zero-coupon bond that matures at time T.

The local volatility vector of the bond is given by

rðt;TÞ ¼ xðt;TÞr0ðT � tÞ þ ð1� xðt;TÞÞr1ðT � tÞ þ ðsðtÞ � xðt;TÞÞb; (24)

where riðT � tÞ ¼ R0BiðT � tÞ denotes the local bond volatility vector in the Gaussian

model with SDF MiðtÞ and xðt;TÞ denotes the contribution of P0ðt;TÞ to the bond price

P(t, T). Specifically,

xðt;TÞ ¼ P0ðt;TÞsðtÞ
Pðt;TÞ 2 ð0; 1�: (25)

When s(t) approaches zero or one, then rðt;TÞ approaches the deterministic local volatil-

ity of a Gaussian model. However, in contrast to the short rate and the market price

of risk, the local volatility can move outside the range of the two local Gaussian vola-

tilities, r0ðT � tÞ and r1ðT � tÞ, because of the last term in Equation (24).

Intuitively, there are two distinct contributions to volatility in Equation (24). The direct

term, defined as

rvolðt;TÞ ¼ xðt;TÞr0ðT � tÞ þ ð1� xðt;TÞÞr1ðT � tÞ; (26)

arises because the two artificial Gaussian models have constant but different yield volatil-

ities. The indirect term, defined as

rlevðt;TÞ ¼ ðsðtÞ � xðt;TÞÞb (27)

is due to the Gaussian models having different yield levels. Two special cases illustrate the

distinct contributions to volatility. If P0ðt;TÞ ¼ P1ðt;TÞ ¼ Pðt;TÞ, then rlevðt;TÞ ¼ 0 and

the local volatility vector reduces to rðt;TÞ ¼ sðtÞr0ðT � tÞ þ ð1� sðtÞÞr1ðT � tÞ. On the

other hand, if r0ðT � tÞ ¼ r1ðT � tÞ, the first term is constant, but there is still stochastic

volatility due to the second term which becomes more important the bigger the difference

between the two artificial bond prices P1ðt;TÞ and P0ðt;TÞ.9

The instantaneous expected excess return and volatility of the bond are

eðt;TÞ ¼ KðtÞ0rðt;TÞ (28)

vðt;TÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rðt;TÞ0rðt;TÞ

q
: (29)

9 If k0;X and j are zero, then r0ðT � tÞ ¼ r1ðT � tÞ.
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Equations (20)–(29) show that the nonlinear term structure model differs from the es-

sentially affine Gaussian base model in two important aspects. First, the volatilities of bond

returns and yields are time-varying and hence expected excess returns are moving with both

the price and the quantity of risk.10 Second, the short rate r(t), the instantaneous volatility

v(t, T), and the instantaneous expected excess return e(t, T) are nonlinear functions of X(t).

3. Estimation

In this section, we estimate the nonlinear model described in Section 2 and compare it to

standard essentially affine A0ð3Þ and A1ð3Þ models. All three models have three factors and

the number of parameters is 22 in the A0ð3Þ model, 23 in the A1ð3Þ model, and 26 in the

nonlinear model. The A0ð3Þ is a special case of our nonlinear model where M0ðtÞ ¼MðtÞ.
The A1ð3Þ model is well know and thus we only present the setup with results in Section

3.2 and defer details to Feldhütter (2016).

3.1 Data

We treat each period as a month and estimate the models using a monthly panel of five

zero-coupon Treasury bond yields and their realized variances. Although it is in theory suf-

ficient to use bond yields to estimate the model, we add realized variances in the estimation

to improve the identification of model parameters (see Cieslak and Povala [2016] for a

similar approach). We use daily (continuously compounded) 1-, 2-, 3-, 4-, and 5-year zero-

coupon yields extracted from US Treasury security prices by the method of Gurkaynak,

Sack, and Wright (2007). The data are available from the Federal Reserve Board’s webpage

and cover the period 1961:07 to 2014:04. For each bond maturity, we average daily obser-

vations within a month to get a time series of monthly yields. We use realized yield variance

to measure yield variance. Let ys
t and rvs

t denote the yield and realized yield variance of a

s-year bond in month t based on daily observations within that month. Specifically,

ys
t ¼

1

Nt

XNt

i¼1

ys
d;t ið Þ; (30)

rvs
t ¼ 12

XNt

i¼1

ðys
d;tðiÞ � ys

d;tði� 1ÞÞ2; (31)

where ys
d;tðiÞ denotes the yield at day i within month t, Nt denotes the number of trading

days within month t, and ys
d;tð0Þ denotes the last observation in month t – 1. The realized

variance converges to the quadratic variation as N approaches infinity, see Andersen,

Bollerslev, and Diebold (2010) and the references therein for a detailed discussion.

To check the accuracy of realized variance based on daily data, we compare realized

volatility with option-implied volatility (to be consistent with the options literature we look

at implied volatility instead of implied variance). We obtain implied price volatility of 1

month at-the-money options on 5-year Treasury futures from Datastream and convert it to

yield volatility.11 We then calculate monthly volatility by averaging over daily volatilities.

10 The instantaneous volatility of the bond yield is 1
s vðt ; t þ sÞ.

11 We calculate yield volatility by dividing price volatility with the bond duration. We calculate bond

duration in two steps. We first find the coupon that makes the present value of a five year bond’s
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Figure 1 shows that realized volatility tracks option-implied volatility closely (the correl-

ation is 87%), and thus we conclude that realized variance is a useful measure for yield

variance.

3.2 The A1(3) Model

We briefly describe the A1ð3Þ model in this section and refer the reader to Feldhütter

(2016) for a detailed discussion. The dynamics of the three-dimensional state vector XðtÞ
¼ ðX1ðtÞ;X2ðtÞ;X3ðtÞÞ0 are

dXðtÞ ¼ jð �X�XðtÞÞdt þ SðtÞdWðtÞ; (32)
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Figure 1. Realized and option-implied yield volatility. We use monthly estimates of realized yield vari-

ance based on daily squared yield changes. This graph shows that option-implied volatility tracks the

realized volatility closely over the last 10 years (the correlation is 87%). Option-implied volatility is ob-

tained from 1-month at-the-money options on 5-year Treasury futures as explained in the text. The

data are available from Datastream since October 2003.

cash flow equal to the at-the-money price of the underlying bond the option is written on (avail-

able from Datastream). We then calculate the modified duration of this bond.
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where �X ¼ ð �X1; 0;0Þ0 is the long run mean,

j ¼

jð1;1Þ 0 0

jð2;1Þ jð2;2Þ jð2;3Þ

jð3;1Þ jð3;2Þ jð3;3Þ

0
BB@

1
CCA (33)

is the positive-definite mean reversion matrix, W(t) is a three-dimensional Brownian mo-

tion, and

S tð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d1X1 tð Þ

p
0 0

0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ d2X1 tð Þ

p
0

0 0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ d3X1 tð Þ

p
0
BB@

1
CCA (34)

is the local volatility matrix with d ¼ ð1; d2; d3Þ.
The dynamics of the SDF M(t) are

dMðtÞ
MðtÞ ¼ �rðtÞdt � KðtÞ0dWðtÞ; (35)

where the short rate r(t) and the three-dimensional vector SðtÞKðtÞ are affine functions of

X(t). Specifically,

rðtÞ ¼ q0 þ q0XXðtÞ; (36)

where q0 is a scalar and qX is a three-dimensional vector. The market price of risk KðtÞ is

the solution of the equation

S tð ÞK tð Þ ¼

kX; 1;1ð ÞX1 tð Þ

k0;2 þ kX; 2;1ð ÞX1 tð Þ þ kX; 2;2ð ÞX2 tð Þ þ kX; 2;3ð ÞX3 tð Þ

k0;3 þ kX; 3;1ð ÞX1 tð Þ þ kX; 3;2ð ÞX2 tð Þ þ kX; 3;3ð ÞX3 tð Þ

0
BB@

1
CCA; (37)

where k0 denotes a three-dimensional vector and kX a three-dimensional matrix.

The bond price and the instantaneous yield volatility are

PðXðtÞ;TÞ ¼ eAðT�tÞþBðT�tÞ0XðtÞ (38)

vðXðtÞ;TÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
BðT � tÞ0SðXðtÞÞSðXðtÞÞBðT � tÞ

q
; (39)

where AðsÞ and BðsÞ satisfy the ODEs

dAðsÞ
ds

¼ j �X� k0

� �0
BðsÞ þ 1

2

X3

i¼2

BiðsÞ2 � q0; Að0Þ ¼ 0 (40)

dBðsÞ
ds

¼ jþ kXð Þ0BðsÞ þ 1

2

X3

i¼1

BiðsÞdi � qX; Bð0Þ ¼ 03�1: (41)

3.3 Estimation Methodolgy

We use the unscented Kalman filter (UKF) to estimate the nonlinear model, the extended

Kalman filter to estimate the A1ð3Þ model, and the Kalman filter to estimate the A0ð3Þ
model. Christoffersen et al. (2014) show that the UKF works well in estimating term
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structure models when highly nonlinear instruments are observed. We briefly discuss the

setup but refer to Christoffersen et al. (2014) and Carr and Wu (2009) for a detailed de-

scription of this nonlinear filter.

When we estimate the nonlinear and A1ð3Þ model, we stack the five yields in month t in

the vector Yt, the corresponding five realized yield variances in the vector RVt, and set up

the model in state-space form. The measurement equation is

Yt

RVt

 !
¼

f Xtð Þ

g Xtð Þ

 !
þ

ryI5 0

0 rrvI5

 !
�t; �t � N 0; I10ð Þ; (42)

where f ð�Þ is the function determining the relation between the latent variables and yields, g

ð�Þ is the function determining the relation between the latent variables and the variance of

yields, and the positive parameters ry and rrv are the pricing errors for yields and their vari-

ances.12 Specifically, f ¼ ðf1; . . .; f5Þ0 and g ¼ ðg1; . . .; g5Þ0 where

fsðXtÞ ¼ �
1

s
ln PðXt; t þ sÞð Þ (43)

gsðXtÞ ¼
1

s2
v2ðXt; t þ sÞ (44)

with PðXt; t þ sÞ and vðXt; t þ sÞ given in Equation (7) and (29), respectively. In the A0ð3Þ
model, yield volatility is constant and we therefore only include yields (and not realized

variances) in the estimation.

In the nonlinear model, the state space is Gaussian and thus the transition equation for

the latent variables is

Xtþ1 ¼ CþDXt þ gtþ1; gt � Nð0;QÞ; (45)

where C is a vector and D is a matrix that enters the 1-month ahead expectation of Xt, that

is, EtðXtþ1Þ ¼ CþDXt. The covariance matrix of Xtþ1 given Xt is constant and equal

to Q.

In the A1ð3Þ model, we use the Gaussian transition equation in (45) as an approxima-

tion because the dynamics of X are non-Gaussian. This is a standard approach in the litera-

ture (Feldhütter and Lando, 2008). The bond price PðXt; t þ sÞ and volatility vðXt; t þ sÞ in

Equations (43) and (44) of the A1ð3Þ model are given in Equation (38) and (39) in Section

3.2. We can use the approximate Kalman filter because both yields and variances are affine

in X in the A1ð3Þ model.

We use the normalization proposed in Dai and Singleton (2000) to guarantee that the

parameters are well identified if sðXtÞ is close to zero or one, or if c and all elements of b

are close to zero. In the nonlinear model, we assume in Equation (1) that the mean rever-

sion matrix, j, is lower triangular, the mean of the state variables, �X, is the zero vector, and

that the local volatility, R, is the identity matrix. The normalizations in the A1ð3Þ model are

given in Section 3.2.

12 We choose to keep the estimation as parsimonious as possible by letting the rrv be the same for

all realized variances. An alternative is to use the theoretical result in Barndorff-Nielsen and

Shephard (2002) that the variance of the measurement noise is approximately two times the

square of the spot variance and allow for different measurement errors across bond maturity.
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3.4 Estimation Results

Estimated parameters with asymptotic standard errors (in parenthesis) are reported in

Tables II and III. Columns 2–4 of Table II show parameter estimates based on the whole

sample (1961:07–2014:04) that includes the period of the monetary experiments where the

1-year bond yield and its volatility exceeded 15% and 5%, respectively. We re-estimate the

nonlinear model using only yield and volatility data for the period 1987:08–2014:04, which

excludes the high yield and yield volatility regime during the early 80s.13 Columns 5–7 of

Table II show that the estimated parameters for this period are similar to the estimated par-

ameters for the whole sample period. In particular, the nonlinear parameters b and c have

the same sign and are of similar magnitude. The parameter estimates for the A1ð3Þ and the

A0ð3Þmodel are reported in Table III.

Table II. Parameter estimates of the nonlinear three-factor model

This table contains parameter estimates and asymptotic standard errors (in parenthesis) for the

nonlinear three-factor model. The left column shows parameters estimates based on yield and

realized variance data for the whole sample (1961:07–2014:04) and the right column shows par-

ameter estimates based on yield and realized variance data for the Post-Volcker period

(1987:08–2014:04). The bond maturities are ranging from 1 to 5 years and the data are obtained

from Gurkaynak, Sack, and Wright (2007). The UKF is used to estimate the nonlinear model.

Nonlinear model (1961–2014) Nonlinear model (1987–2014)

0:3127
ð0:04224Þ

0 0 0:3452
ð0:08753Þ

0 0

j 0:3063
ð0:05601Þ

0:002189
ð2:246e�05Þ

0 0:5507
ð0:09825Þ

0:003245
ð0:002091Þ

0

1:258
ð0:1103Þ

0:03804
ð0:02125Þ

0:4098
ð0:0377Þ

1:057
ð0:2745Þ

1:072e� 05
ð0:0002734Þ

0:4449
ð0:2494Þ

q0 �0:001756
ð0:01408Þ

�0:001002
ð0:02238Þ

qX 0:0002071
ð0:0001846Þ

0:003061
ð0:0002364Þ

0:004345
ð0:0001742Þ

0:0002036
ð0:0009384Þ

0:005161
ð0:0004481Þ

0:004939
ð0:0005533Þ

k0 0:7569
ð0:04302Þ

�0:01631
ð0:5559Þ

�0:4413
ð0:3375Þ

0:3814
ð0:09227Þ

�0:02483
ð0:09312Þ

�0:3191
ð0:2209Þ

�0:2187
ð0:04129Þ

0:005572
ð0:001321Þ

�0:02053
ð0:005609Þ

�0:2244
ð0:06907Þ

0:003604
ð0:00792Þ

�0:02491
ð0:04552Þ

kX �1:735e� 06
ð4:238e�05Þ

0:001197
ð0:03785Þ

0:6863
ð0:03001Þ

�1:558e� 06
ð2:248e�05Þ

0:001282
ð0:03908Þ

0:7165
ð0:05695Þ

�0:2943
ð0:1053Þ

�0:02387
ð0:01562Þ

0:04613
ð0:05121Þ

�0:3973
ð0:2578Þ

�0:0237
ð0:02542Þ

0:05947
ð0:2159Þ

c 0:0003857
ð0:0004591Þ

0:0005653
ð0:0007368Þ

b �1:444
ð0:008187Þ

�0:2376
ð0:01831Þ

0:2846
ð0:02526Þ

�1:196
ð0:0521Þ

�0:2737
ð0:07188Þ

0:3483
ð0:08285Þ

ry 0:0005463
ð6:945e�05Þ

0:0004679
ð9:47e�05Þ

rrv 7:281e� 05
ð8:491e�06Þ

2:857e� 05
ð3:381e�06Þ

13 Alan Greenspan became chairman of the Fed on August 11, 1987.

350 P. Feldhütter et al.

D
ow

nloaded from
 https://academ

ic.oup.com
/rof/article-abstract/22/1/337/2389555 by C

openhagen Business School user on 29 O
ctober 2018



The bond price in the nonlinear model is a weighted average of two Gaussian bond pri-

ces (see Theorem 1). Figure 2 shows the weight sðXtÞ on the Gaussian base model. If the

stochastic weight approaches zero or one, then the bond price approaches the bond price in

a Gaussian model where yields are affine functions of the state variables and yield variances

are constant. The stochastic weight is distinctly different from one and varies substantially

over the sample period, that is, the mean and volatility of sðXtÞ are 79.98% and 21.35%,

respectively. Moreover, there are both high-frequency and low-frequency movements in

sðXtÞ. The high-frequency movements push sðXtÞ away from one during recessions; we see

spikes during the 1970, 1973–75, 1980, 2001, and 2007–09 recessions. The low-frequency

movement starts in the early 80s where the weight moves significantly below one and

slowly returns over the next 30 years.

To quantify the impact of nonlinearities in our model, we regress yields and their vari-

ances on the three state variables. By construction the R2 of these regressions in the A1ð3Þ
model is 100%. In the nonlinear model, the R2s when regressing the 1- to 5-year yields on

Table III. Parameter estimates of the A1ð3Þ and the A0ð3Þmodel

This table contains parameter estimates and asymptotic standard errors (in parenthesis) for

two three-factor affine models: the A1ð3Þ model with one stochastic volatility factor and the A0ð
3Þ model with only Gaussian factors. The parameter estimates for the A1ð3Þ model are based

on yield and realized variance data for the whole sample (1961:07–2014:04) and the parameter

estimates for the A0ð3Þ model are based on yield data for the whole sample. The bond matur-

ities are ranging from 1 to 5 years and the data are obtained from Gurkaynak, Sack, and Wright

(2007). The extended Kalman filter is used to estimate the A1ð3Þ model and the Kalman filter is

used to estimate the A0ð3Þmodel.

A1ð3ÞModel (1961–2014) A0ð3ÞModel (1961–2014)

1:421
ð0:1863Þ

0 0 0:7064
ð0:1982Þ

0 0

j �0:04787
ð1:899Þ

0:07225
ð0:01938Þ

�0:003283
ð4:101Þ

0:3558
ð0:2189Þ

0:06629
ð0:06185Þ

0

0:283
ð0:6523Þ

�0:009014
ð0:07474Þ

0:356
ð0:01893Þ

0:6473
ð0:1987Þ

0:3549
ð0:2011Þ

0:8202
ð0:1865Þ

q0 0:08832
ð0:3038Þ

0:02046
ð0:06848Þ

qX 0:0003736
ð0:0002645Þ

0:001131
ð0:0009603Þ

1:385e� 05
ð0:000302Þ

�0:001232
ð0:002566Þ

0:01626
ð0:002255Þ

0:01085
ð0:003361Þ

k0 0 0:6101
ð106:4Þ

0:006454
ð7:178Þ

0:1353
ð0:1707Þ

�0:3741
ð0:1998Þ

0:1233
ð0:4018Þ

6:75e� 05
ð0:07544Þ

0 0 �0:335
ð0:1954Þ

�0:01799
ð0:03515Þ

0:006627
ð0:09816Þ

kX 2:378
ð3:64Þ

�0:0006549
ð0:01964Þ

3:381
ð5:878Þ

�7:847e� 05
ð0:001684Þ

0:1821
ð0:1682Þ

0:5751
ð0:114Þ

0:01683
ð0:7003Þ

�0:0001671
ð0:0733Þ

1:302e� 05
ð0:01966Þ

0:183
ð0:2063Þ

�0:09196
ð0:08949Þ

�0:03485
ð0:1974Þ

d 0 491:5
ð836:6Þ

2:417
ð0:3336Þ

ðj �XÞ 1:509
ð0:1109Þ

0 0

ry 0:0006001
ð8:676e�05Þ

0:0001038
ð1:698e�05Þ

rrv 6:18e� 05
ð6:019e�06Þ
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the three state variables are 89.40%, 89.64%, 90.12%, 90.66%, and 91.14%, respectively,

showing a considerable amount of nonlinearity. Nonlinearity shows up even stronger in the

relation between yield variances and the three factors. Specifically, the R2s when regressing

the 1- to 5-year yield variances on the three state variables are 29.52%, 27.99%, 28.18%,

29.52%, and 31.67%, respectively. For comparison, regressing the stochastic weight sðXtÞ
on all three state variables leads to an R2 of 80.88%. Overall, these initial results suggest an

important role for nonlinearity and we explore this in detail in the next section.

4. Empirical Results

In this section, we show that the nonlinear three-factor model captures time variation in ex-

pected excess bond returns and yield volatility. Moreover, the nonlinearity leads to URP

and USV, an empirical stylized fact, that affine models cannot capture without knife-edge

restrictions and additional state variables that describe variations in expected excess returns

and yield variances but not yields. While nonlinearities help explain time-variation in excess

returns and yield variances, we show in Section 4.3 that the amount of nonlinearity in the

cross-section is small and thus our model retains the linear relation of US-Treasury yields

across maturities.

Figure 2. Stochastic weight on Gaussian base model. The bond price in the nonlinear model is

P ðt ;T Þ ¼ sðtÞP0ðt ;T Þ þ ð1� sðtÞÞP1ðt ;T Þ, where P0ðt ;T Þ and P1ðt ;T Þ are bond prices that belong to the

class of essentially affine Gaussian term structure models and s(t) is a stochastic weight between 0

and 1. This figure shows the stochastic weight and the shaded areas show NBER recessions.
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4.1 Expected Excess Returns

Expected excess returns of US Treasury bonds vary over time as documented in among

others Fama and Bliss (1987) and Campbell and Shiller (1991) (CS). CS document this by

regressing future yield changes on the scaled slope of the yield curve. Specifically, for all

bond maturities s ¼ 2; 3;4; 5 we have

ys�1
tþ1 � ys

t ¼ constþ /s ys
t � y1

t

s� 1

� �
þ residual; (46)

where ys
t is the (log) yield at time t of a zero-coupon bond maturing at time t þ s. The slope

regression coefficient is one if excess holding period returns are constant, but CS find nega-

tive regression coefficients implying that a steep slope predicts high future excess bond

returns. Table IV replicates their findings for the sample period 1961:07–2014:04, that is,

slope coefficients are negative, decreasing with maturity, and significantly different from

one.

To check whether each model can match this stylized fact, we simulate a sample path of

1,000,000 months for 2-, 3-, 4-, and 5-year excess bond returns and compare the model

implied CS regression coefficients with those observed in the data. Table IV shows that the

nonlinear model and A0ð3Þ model captures the negative CS regression coefficients in

population.

Figure 3 shows that 1-year expected excess returns in the nonlinear model are negative

in the early 80s and positive since the mid-80s while they are alternating between positive

and negative in the A1ð3Þ model. Expected excess returns in the A0ð3Þ model are also posi-

tive since the mid-80s but both affine models cannot capture the very low and high realized

excess returns during the monetary experiment. To formally test whether the nonlinear

model captures expected excess returns better than the two affine models we run regres-

sions of realized excess returns on model implied expected excess returns in sample.

Specifically,

rxs
t;tþn ¼ as;n þ bs;nEt½rxs

t;tþn� þ residual; 8s > n ¼ 1;2;3; 4;5; (47)

where rxs
t;tþn is the n-year log return on a bond with maturity s in excess of the n-year yield

and Et½rxs
t;tþn� is the corresponding model implied expected excess return.14 The estimated

expected excess returns for the nonlinear, A1ð3Þ, and A0ð3Þ model are based on the sample

period 1961:07 to 2014:04. The regression results are reported in Table V. If the model

captures expected excess returns well, then the slope coefficient should be one, the constant

zero. The slope coefficients are lower but generally close to one in the nonlinear model. In

the A1ð3Þ model, the slope coefficients are close to one at the 1-year horizon but are too

low at longer horizon, while in the A0ð3Þ model, the slope coefficients are too high at the

1-year horizon and too low for the 3- and 4-year horizon. The average R2 across bond

maturity and holding horizon is 27.4% in the nonlinear model while it is only 6.5% in the

A1ð3Þ and 7.8% in the A0ð3Þ model.

To measure how well the nonlinear model predicts excess returns we compare the mean

squared error of the predictor to the unconditional variance of excess returns. Specifically,

14 Moments of yields and returns in the nonlinear model are easily calculated using Gauss–Hermite

quadrature, see Appendix C for details. In the rest of the paper we use Gauss–Hermite quadrature

when we do not have closed-form solutions for expectations or variances.
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we define the statistic “fraction of variance explained” that measures the explanatory

power of the model implied in sample expected excess return as follows:15

FVE ¼ 1�
1
T

PT
t¼1 rxs

t;tþn � Et rxs
t;tþn

h i	 
2

1
T

PT
t¼1 rxs

t;tþn � 1
T

PT
t¼1 rxs

t;tþn

	 
2
: (48)

If the predictor is unbiased, then the R2 from the regression of realized on expected excess

returns is equal to the FVE and otherwise it is an upper bound. Table V shows the FVEs of

the nonlinear, A1ð3Þ, and A0ð3Þ model for the sample period 1961:07–2014:04. The in

sample FVEs for the nonlinear model are higher than for the A1ð3Þ and A0ð3Þ model. In

contrast to the nonlinear and A0ð3Þmodel, the performance of the A1ð3Þmodel deteriorates

as we increase the holding horizon.

To compare the nonlinear model to affine models more generally we regress future ex-

cess returns on the five yields. The R2s from this regression, shown in the second to last col-

umn of Table V, is an upper bound for the FVE of any affine model for which expected

excess returns are spanned by yields, for example, the Cochrane and Piazzesi (2005) fac-

tor.16 The FVEs of the nonlinear model are equal to or higher than the explanatory power

of the Cochrane–Piazzesi factor. This implies that no affine model without hidden risk pre-

mium factors (see discussion below) can explain more of the variation in realized excess re-

turns than the nonlinear model. The last column of Table V shows that the explanatory

power of any estimator for expected excess returns that is spanned by yields and their vari-

ances is lower than the FVE of our nonlinear model.

Table IV. Campbell–Shiller regressions

This table shows the coefficients /s from the regressions y s�1
tþ1 � y s

t ¼ constþ /s y s
t �y1

t

s�1

	 

þ re-

sidual, where y s
t is the zero-coupon yield at time t of a bond maturing at time t þ s (s and t are

measured in years). The actual coefficients are calculated using monthly data of 1- to 5-year

zero-coupon bond yields from 1961:7 to 2014:04 obtained from Gurkaynak, Sack, and Wright

(2007). Standard errors in parentheses are computed using the Hansen and Hodrick (1980) cor-

rection with twelve lags. The population coefficients for each model are based on one simu-

lated sample path of 1,000,000 months.

Campbell–Shiller regression coefficients

Bond maturity 2-Year 3-Year 4-Year 5-Year

Data �0:63
ð0:64Þ

�0:93
ð0:69Þ

�1:21
ð0:73Þ

�1:47
ð0:77Þ

Nonlinear model �0.61 �0.61 �0.63 �0.65

A1ð3Þ model �0.01 0.01 0.04 0.07

A0ð3Þ model �0.18 �0.37 �0.54 �0.71

15 Almeida, Graveline, and Joslin (2011) refer to this measure as a modified R2.

16 The average R2 from regressing excess returns onto yields for a 1-year holding horizon is 17%

which is lower than the 37% reported in Cochrane and Piazzesi (2005). There are two reasons for

this. First, the data sets are different. If we use the Fama–Bliss data, then the average R2 in-

creases to 25%. Second, Cochrane and Piazzesi (2005) use the period 1964–2003 and R2s are

lower outside this sample period as documented in Duffee (2012).
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4.1.a. Unspanned Risk Premia

There is a lot of empirical evidence that shows that a part of excess bond returns is explained

by macro factors not spanned by linear combinations of yields.17 For example, Bauer and

Rudebusch (2017) find that the R2 when regressing realized excess returns on the first three

PC of yields along with expected inflation is 85% higher when regressing on just the first

three PCs.18 We refer to this empirical finding as Unspanned Risk Premia or URP.

To quantitatively capture URP in a term structure model, Duffee (2011b); Joslin,

Priebsch, and Singleton (2014); and Chernov and Mueller (2012) use five-factor Gaussian

models. The reason for using five factors is that three factors are needed to explain the

cross-section of bond yields and then one or two factors orthogonal to the yield curve ex-

plain expected excess returns. An alternative explanation for the spanning puzzle that has

not been explored in the literature is that there is a nonlinear relation between yields and

expected excess returns. We therefore ask the question: are nonlinearities empirically im-

portant for understanding the spanning puzzle?

To answer the question, we start by regressing model-implied 1-year expected excess re-

turn on the first PC, the first and second PC, . . ., and all five PCs of model-implied yields

for the sample period 1961:07–2014:04. Specifically, for all bond maturities s ¼ 2; 3;4;5

we run the in sample URP regressions

Figure 3. Expected excess returns. The graphs show the expected 1-year log excess returns of zero-

coupon Treasury bonds with maturities of 2, 3, 4, and 5 years. The blue, black, and red lines show ex-

pected excess returns in the three-factor A0ð3Þ; A1ð3Þ, and nonlinear model, respectively. The shaded

areas show NBER recessions.

17 See Ludvigson and Ng (2009), Cooper and Priestley (2009), Cieslak and Povala (2015), Duffee

(2011b), Joslin, Priebsch, and Singleton (2014), and Chernov and Mueller (2012). Bauer and

Rudebusch (2017) argue that this evidence can be explained by measurement error.

18 The R2 is 0.36 in the former and 0.195 in the latter, see Bauer and Rudebusch (2017)’s Table 3.

Joslin, Priebsch, and Singleton (2014) present similar evidence.
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Table V. Excess return regressions

This table shows regression coefficients from a regression of realized (log) excess returns on

model implied expected (log) excess returns in sample. Monthly data for bonds with maturities

ranging from 1 to 5 years are from Gurkaynak, Sack, and Wright (2007) for the period 1961:07 to

2014:04. For n ¼ 1;2;3;4, n-year excess returns are computed by subtracting the n-year (log)

yield from the n-year (log) holding-period return of a s-year bond (s > n). The fraction of

variance explained is defined as FVE ¼ 1�
1
T

PT

t¼1
rx s

t ;tþn�Et rx s
t ;tþn½ �ð Þ2

1
T

PT

t¼1
rx s

t ;tþn�1
T

PT

t¼1
rx s

t ;tþn

� �2, where rx s
t ;tþn is the n-year

excess return on a bond with maturity s and Et ½rx s
t ;tþn � is the corresponding model implied ex-

pected excess return. The last two rows contain the R2 from the regression of realized excess

returns on the five yields and the five yields and five yield variances, respectively. Standard

errors in parentheses are computed using the Hansen and Hodrick (1980) correction with the

number of lags equal to the number of overlapping months.

Regressing realized excess returns on model-implied expected excess in sample (1961–2014)

Nonlinear model A1ð3Þ model A0ð3Þ model 5Y 5Yþ
5VAR

Maturity a� 103 b R2 FVE a� 103 b R2 FVE a� 103 b R2 FVE R2 R2

1-Year holding horizon

s¼2 �2:58
ð2:89Þ

0:81
ð0:20Þ

0.22 0.15 2:53
ð2:62Þ

0:96
ð0:35Þ

0.12 0.10 �3:77
ð3:92Þ

1:30
ð0:45Þ

0.12 0.11 0.13 0.15

s¼3 �4:85
ð5:06Þ

0:83
ð0:20Þ

0.23 0.16 4:05
ð4:64Þ

0:97
ð0:33Þ

0.13 0.12 �7:35
ð6:71Þ

1:35
ð0:44Þ

0.14 0.12 0.14 0.16

s¼4 �6:60
ð6:74Þ

0:85
ð0:19Þ

0.24 0.18 5:07
ð6:32Þ

1:00
ð0:32Þ

0.15 0.13 �10:29
ð8:71Þ

1:37
ð0:41Þ

0.15 0.13 0.16 0.18

s¼5 �7:51
ð8:09Þ

0:86
ð0:19Þ

0.25 0.20 5:85
ð7:77Þ

1:03
ð0:32Þ

0.16 0.15 �12:61
ð10:23Þ

1:37
ð0:38Þ

0.17 0.15 0.17 0.20

2-Year holding horizon

s¼3 �3:73
ð4:60Þ

0:87
ð0:22Þ

0.29 0.23 6:31
ð4:73Þ

0:62
ð0:38Þ

0.07 0.00 �2:21
ð7:99Þ

0:91
ð0:55Þ

0.07 0.05 0.09 0.10

s¼4 �6:36
ð8:08Þ

0:89
ð0:21Þ

0.30 0.25 10:75
ð8:51Þ

0:67
ð0:37Þ

0.08 0.03 �5:19
ð13:52Þ

0:95
ð0:51Þ

0.09 0.07 0.10 0.11

s¼5 �7:72
ð10:70Þ

0:91
ð0:21Þ

0.32 0.29 14:24
ð11:71Þ

0:73
ð0:36Þ

0.10 0.05 �8:94
ð17:40Þ

1:01
ð0:47Þ

0.11 0.09 0.12 0.13

3-Year holding horizon

s¼4 �2:30
ð5:54Þ

0:83
ð0:23Þ

0.29 0.24 10:30
ð6:45Þ

0:31
ð0:41Þ

0.02 �0.15 2:20
ð11:54Þ

0:57
ð0:60Þ

0.03 �0.02 0.07 0.13

s¼5 �3:96
ð10:05Þ

0:87
ð0:22Þ

0.33 0.29 17:60
ð12:09Þ

0:40
ð0:40Þ

0.03 �0.11 0:43
ð19:90Þ

0:68
ð0:55Þ

0.05 0.01 0.08 0.15

4-Year holding horizon

s¼5 0:53
ð6:57Þ

0:75
ð0:24Þ

0.25 0.20 12:72
ð8:12Þ

0:25
ð0:42Þ

0.01 �0.21 1:82
ð14:53Þ

0:59
ð0:62Þ

0.04 �0.03 0.08 0.23
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Et½rxs
t;tþ1� ¼ as;1:n þ

Xn

i¼1

bs;1:n PCi;t þ �s;1:n
t ; 8n ¼ 1;2; 3; 4;5; (49)

where PCi;t denotes the i-th PC of all five yields (ordered by decreasing contribution to the

total variation in yields). The in sample R2s of these regressions are reported in Panels B, C,

and D of Table VI. Panels C and D show that by construction the first three PCs explain all

the variation in expected excess returns in the A1ð3Þ and A0ð3Þ model since expected excess

returns are linear functions of yields in affine models. Panel B shows that the first three PCs

explain on average 69.4% of the variation of expected excess returns in the nonlinear

model. That is, almost one-third of the variation of expected excess returns is due to a non-

linear relation between expected excess returns and yields in sample.

Empirically, realized excess returns are invariably used in lieu of expected excess returns as

dependent variable. Hence, for all bond maturities s ¼ 2; 3;4;5 we run the URP regressions

rxs
t;tþ1 ¼ as;1:n þ

Xn

i¼1

bs;1:n PCi;t þ residual; 8n ¼ 1;2;3; 4;5: (50)

Panel A in Table VI shows R2 from regressions of realized excess returns on PCs of model-

implied yields in the data based on the sample period 1961:07–2014:04. To check whether

each model can match the actual R2 from the URP regression, we simulate a sample path of

1,000,000 months for 2- to 5-year excess bond returns and 1- to 5-year bond yields and

compare the model implied URP regression R2s to those observed in the data. Panels E, F,

and G show the population R2 for the nonlinear, A1ð3Þ, and A0ð3Þ model, respectively. In

contrast to both affine models the population R2 in the nonlinear model is largely in line

with the actual R2 observed in the data.

The final column in Panels E, F, and G shows the population R2 when we replace the

model implied PCs in URP regression (50) with the model implied expected excess return,

that is,

rxs
t;tþ1 ¼ as þ bsEt½rxs

t;tþ1� þ residual; 8s ¼ 2;3;4; 5: (51)

In the nonlinear model, the average (over all bond maturities) population R2 in regression

(50) when n¼ 3 is 81% higher than in regression (51), that is, 26.2% versus 14.5%. This

implies that if there is a macro variable that perfectly tracks expected excess returns, aver-

age R2s when regressing realized excess returns on the first three PCs and this macro factor

would be 81% higher than when regressing on just the first three PCs; similar to the incre-

mental R2 documented in Bauer and Rudebusch (2017). Of course, this is not because this

macro factor contains any information not in the yield curve.

Is it plausible that macro factors (partially) pick up nonlinearities? To address this ques-

tion, we take the in sample residuals from regressing expected excess returns on PCs in the

nonlinear model (Panel B in Table VI) and regress them on expected inflation. Specifically,

for all bond maturities s ¼ 2; 3; 4;5 we run the regression

�s;1:n
t ¼ as;n þ bs;npt þ residual; 8n ¼ 3;4;5; (52)

where �s;1:n
t is the residual from URP regression (49) and pt is an estimator for expected in-

flation that is based on the Michigan Survey of Consumers (MSC).19 Table VII shows the

19 Expected inflation is measured as the cross-sectional average of one-year ahead price growth

forecasts of consumers surveyed by the University of Michigan. MSC is a survey conducted on
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Table VI. URP regressions

This table shows R2s (in percent) from regressions of excess returns on the five PCs of yields.

Panel A shows R2 from regressions of 1-year actual realized excess return on PCs of actual

yields based on the sample 1961:07–2014:04. Panels B, C, and D show for each model in sample

R2 from regressions of model-implied 1-year excess return on model-implied PCs of yields.

Panels E, F, and G show for each model population R2s from regressions of realized 1-year ex-

cess return on PCs of yields based on a simulated data sample of 1,000,000 months. The final

column of Panels E–G shows the R2s when using the model-implied excess return instead of

the model-implied PCs as independent variable.

Maturity PC1 PC1�PC2 PC1�PC3 PC1�PC4 PC1�PC5 Et ½rxs
t;tþ1�

Panel A: R2 in data (1961–2014)

s ¼2 2.1 12.6 13.2 14.4 14.6

s ¼3 0.8 13.9 14.3 15.9 16.2

s ¼4 0.3 15.6 15.8 17.8 18.1

s ¼5 0.1 17.2 17.3 19.7 19.9

Panel B: In sample R2 for nonlinear three-factor model

s ¼2 5.7 64.9 67.5 85.3 91.2

s ¼3 4.6 67.7 69.1 84.8 90.8

s ¼4 4.2 69.7 70.6 84.8 90.7

s ¼5 4.4 71.0 72.0 85.4 90.9

Panel C: In sample R2 for A1ð3Þ model

s ¼2 10.8 99.8 100.0

s ¼3 10.5 99.7 100.0

s ¼4 10.2 99.6 100.0

s ¼5 9.9 99.5 100.0

Panel D: In sample R2 for A0ð3Þ model

s ¼2 5.3 99.6 100.0

s ¼3 1.4 99.9 100.0

s ¼4 0.2 100.0 100.0

s ¼5 0.0 99.6 100.0

Panel E: Population R2 for nonlinear three-factor model

s ¼2 0.0 10.7 14.5 15.7 15.8 28.0

s ¼3 0.1 10.5 14.4 15.2 15.3 26.2

s ¼4 0.1 10.6 14.5 15.2 15.3 25.3

s ¼5 0.1 11.1 14.7 15.6 15.6 25.2

Panel F: Population R2 for A1ð3Þ model

s ¼2 3.9 4.5 4.5 4.5 4.5 4.5

s ¼3 3.9 4.5 4.5 4.5 4.5 4.5

s ¼4 3.9 4.5 4.5 4.5 4.5 4.5

s ¼5 3.9 4.5 4.5 4.5 4.5 4.5

(continued)
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R2, slope coefficient, and 12-lag Newey–West corrected t-statistics of regression (52).

Expected inflation explains about 11% of the variation in sample URP residuals based on

the first three PCs and it is statistically significant at the 5% level. The R2s increase to

slightly less than 20% when adding the fourth PC. Expected inflation remains statistically

significant even when considering in sample URP residuals based on all five PCs. Hence,

although all information about expected excess returns is contained in the yield curve,

expected inflation appears to contain information about them when running linear

regressions.

Overall, our nonlinear model highlights an alternative channel that helps explain the

spanning puzzle: expected excess returns are nonlinearly related to yields and therefore a

part of expected excess returns appears to be “hidden” from a linear combination of yields

and this part can be picked up by macro factors. This is achieved in a parsimonious three-

factor model rather than a five-factor model as is common in the literature.

4.2 Stochastic Volatility

Table VIII shows that there is more than one factor in realized yield variances in our data:

the first PC of yield variances explain 94.5% of the variation while the first two PCs ex-

plain 99.2%. The A1ð3Þ model has by definition only one factor explaining volatilities and

therefore the first PC explains all the variation in model-implied realized variances.20 In the

nonlinear model, the first PC explains 97.5% of the variation in model-implied variances

and the first two PCs explain 99.9%. Hence, yield variances in the nonlinear model exhibit

a linear multi-factor structure as in the data.

The nonlinear and A1ð3Þ model also have significantly different distributions of future

yield volatility. Figure 4 shows the 1-year ahead conditional distribution of the instantaneous

yield volatility for the bond with 3 years to maturity (the distributions for bonds with other

maturities are similar).21 The volatility is a linear function of only one factor in the A1ð3Þ
model and the distribution of future volatility is fairly symmetric and does not change much

over time. In the nonlinear model, volatility is a nonlinear function of three factors and the

volatility distribution takes on a variety of shapes that persist over time.

The 97.5 quantiles of the 1-year ahead volatility distribution in the nonlinear model show

that the market did not anticipate the possibility of very volatile yields before the monetary

Table VI. Continued

Maturity PC1 PC1�PC2 PC1�PC3 PC1�PC4 PC1�PC5 Et ½rxs
t;tþ1�

Panel G: Population R2 for A0ð3Þ model

s ¼2 0.4 9.5 9.6 9.6 9.6 9.6

s ¼3 0.1 9.8 9.8 9.8 9.8 9.8

s ¼4 0.0 10.6 10.6 10.6 10.6 10.6

s ¼5 0.0 11.7 11.7 11.7 11.7 11.7

monthly frequencies covering a large cross-section of consumers and Ang, Bekaert, and Wei

(2007) show that it is a good unbiased predictor of inflation.

20 Even though realized variances are noisy measures of integrated variances, average yields never-

theless span realized variances, see Andersen and Benzoni (2010).

21 The instantaneous yield volatility is 1
s v ðsÞðtÞ with v ðsÞðtÞ given in Equation (29).
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experiment in the early 80s, apart from brief periods around the 1970s recessions. However,

there is a significant probability of a high yield volatility scenario since the 80s, despite the

fact that volatilities have come down to levels similar to those in the 60s and 70s. It is only in

the calm 2005–06 period where a high-volatility scenario was unlikely. This finding suggests

that there is information about the risk of a high volatility regime in Treasury bond data

which is similar to the appearance of the smile in equity options since the stock market crash

of eighty-seven. Figure 5 shows the 97.5 quantiles of the 1-year ahead distribution of yield

volatility for sample periods with (1961:07–2014:04) and without (1987:08–2014:04) the

early 80s. There is a fat right-tail in the volatility distribution in both cases and hence the

Table VIII. PC analysis of realized yield variances

PCs are constructed from a panel of realized yield variances of constant-maturity zero-coupon

bond yields with maturities ranging from 1 to 5 years. The contribution of the first PC, the first

and second PC, and the first, second, and third PC to the total variation in the five realized yield

variances are shown for the data, the nonlinear model, and the A1ð3Þ model. Actual PC contri-

butions are computed using monthly realized variance data (based on daily squared yield

changes) from 1961:07 to 2014:04 obtained from Gurkaynak, Sack, and Wright (2007).

Population PC contributions for the nonlinear and A1ð3Þ model are computed using monthly

realized variance data (based on daily squared yield changes) based on one simulated sample

path of 1,000,000 months.

PC1 PC1 � PC2 PC1 � PC3

Data 0.9454 0.9922 0.9996

Nonlinear model 0.9750 0.9993 1.0000

A1ð3Þ model 1.0000 1.0000 1.0000

Table VII. URP regression residuals and expected inflation

We first run a regression of model-implied 1-year expected excess returns on the PCs

of model- implied yields, Et ½rx s
t ;tþ1� ¼ as;1:n þ

Pn
i¼1

bs;1:nPCi ;t þ �s;1:n
t ; n ¼ 3; 4; 5: Then we run a

regression of the residual of this regression on expected inflation, pt, measured by

the cross-sectional average forecasts of the Michigan Surveys of Consumers (MSC),

�s;1:n
t ¼ as;n þ bs;npt þ residual;n ¼ 3; 4; 5. This table shows the R2 (in percent), slope coefficient,

and the t-statistic from the second regression. Expected excess returns are measured as the ex-

pected 1-year bond return in excess of the 1-year yield. Standard errors are Newey and West

(1987) corrected using twelve lags. The data sample is 1978:1–2014:4 as MSC is not available at

monthly frequencies before 1978.

PC1 � PC3 PC1 � PC4 PC1 � PC5

Maturity R2 Slope t-Statistic R2 Slope t-Statistic R2 Slope t-Statistic

s ¼2 11.52 �0.0011 �1.97 20.56 �0.0011 �4.27 17.76 �0.0008 �3.88

s ¼3 11.66 �0.0020 �2.09 19.55 �0.0020 �4.00 16.44 �0.0015 �3.63

s ¼4 11.56 �0.0027 �2.17 18.65 �0.0027 �3.79 15.28 �0.0020 �3.39

s ¼5 11.09 �0.0033 �2.15 17.78 �0.0032 �3.59 14.17 �0.0024 �3.17
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nonlinear model captures the risk of strong increase in volatility, even when such an event is

not in the sample used to estimate the model.

The regime-switching models of Dai, Singleton, and Yang (2007); Bansal and Zhou (2002);

and Bansal, Tauchen, and Zhou (2004) capture time variation in the probabilities of high vola-

tility regimes by adding a state variable that picks up the regime. However, if a high-volatility

regime is not in the sample used to estimate the model, then the regimes in the model will pick

up minor variations in volatility (see the discussion in Dai, Singleton, and Yang, 2007).

Everything works through nonlinearities in our model and therefore the probability of a high-

volatility regime can be pinned down in a sample that does not include such an episode.
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Figure 4. Distribution of 1-year ahead yield volatility. The graphs show quantiles in the 1-year ahead

distribution of instantaneous volatility for the bond with a maturity of 3 years. The top graph shows

the distribution in the three-factor nonlinear model, while the bottom graph shows the distribution in

the three-factor A1ð3Þ model. The data sample is 07:1961 to 04:2014 and the results for July in each

year are plotted.
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4.2.a. Unspanned Stochastic Volatility

There is a large literature suggesting that interest rate volatility risk cannot be hedged by a

portfolio consisting solely of bonds; a phenomenon referred to by Collin-Dufresne and

Goldstein (2002) as Unspanned Stochastic Volatility or USV. The empirical evidence sup-

porting USV typically comes from a low R2 when regressing measures of volatility on inter-

est rates. For instance, Collin-Dufresne and Goldstein (2002) regress straddle returns on

changes in swap rates and document R2s as low as 10%. Similarly, Andersen and Benzoni

(2010) regress yield variances—measured using high frequency data—on the first six PCs of

yields and find low R2s. Inconsistent with this evidence, standard affine models produce

high R2s in USV regressions because there is a linear relation between yield variances and

yields in the model.

The nonlinear model provides an alternative explanation for low R2s in USV regression

because the relation between yield variances and yields is nonlinear. However, it is an empir-

ical question if nonlinearities in the model are strong enough to produce R2s similar to those

found in the data. To answer this question, we follow Andersen and Benzoni (2010) and re-

gress realized yield variance on PCs of yields. Specifically, for each bond maturity s ¼ 1;2; 3;

4;5 and number n ¼ 1; 2; 3;4; 5 of PCs we run the following USV regression in the data:

rvs
t ¼ as þ

Xn

i¼1

bs
i PCi;t þ �st ; (53)

where as in the previous section, PCi;t denotes the i-th PC of all five yields (ordered by

decreasing contribution to the total variation in yields). The R2s of these USV regressions in

the data are reported in Panel A of Table IX. The average R2 when regressing realized vari-

ance on the first three PCs is 32.4%, confirming that the PCs of yields only explain a frac-

tion of the variation in yield variance in the data.22

To assess the ability of the nonlinear model to capture USV we regress model-implied in-

stantaneous yield variance on the PCs of model-implied yields:

vðt; t þ sÞ2 ¼ as þ
Xn

i¼1

bðsÞi PCi;t þ �st ; (54)

where vðt; t þ sÞ is given in Equation (29). Panel B shows that the average in sample R2

from USV regression (54) on the first three PCs (n¼3) is with 42.5% not substantially

higher than in the data. In contrast, Panel D shows that in the A1ð3Þ model the in sample

R2 is 100% once the first three PCs are included in the USV regression (54). Hence, the

presence of nonlinearities gives rise to low R2s in USV regressions.

To understand why a significant part of variance is (linearly) unspanned by yields we re-

call that Equation (24) shows that the local volatility consists of two components, rlev and

rvol, and thus the instantaneous yield variance is

rðt;TÞ0rðt;TÞ ¼ rvolðt;TÞ0rvolðt;TÞ þ rlevðt;TÞ0rlevðt;TÞ þ 2rvolðt;TÞ0rlevðt;TÞ: (55)

While the average (across maturities) in sample R2 from regressing the yield variance on the

first five PCs of model-implied yields is only 59.2% (see Panel B of Table IX), the average

22 The R2 are higher than those found in Andersen and Benzoni (2010) because the sample period in-

cludes the monetary experiment, see Jacobs and Karoui (2009) for a discussion of the explanatory

power in USV regressions for different time periods.
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in sample R2 from regressing each component in Equation (55) on the five PCs of yields is

94.4%, 88.2%, and 94.9%, respectively. Hence, each component is close to being linearly

spanned, but they partially offset each other.23 When P1ðt;TÞ ¼ P2ðt;TÞ, the second and

third term in Equation (55) vanish and volatility is largely spanned. Hence, the fraction of

volatility that is unspanned varies significantly over time consistent with findings in Jacobs

and Karoui (2009).
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Figure 5. Distribution of 1-year ahead yield volatility for the nonlinear model estimated using the

period 1961-2014 and estimated using the period 1987-2014. The graphs show the 97.5% quantiles in

the 1-year ahead distribution of instantaneous volatility. The red line shows the 97.5% quantiles in the

three-factor nonlinear model, where the model is estimated by using data for the whole sample period

1961–2014. The yellow line shows the 97.5% quantiles in the three-factor nonlinear model, where the

model is estimated by using data for the period 1987–2014. The results for September in each year are

plotted.

23 In particular, as s(t) moves toward the high volatility model, the yield difference between the two

models tends to decrease. That is, as the first part in Equation (55) increases, the second part in

the same equation tends to decrease.

Nonlinear Term Structure Model 363

D
ow

nloaded from
 https://academ

ic.oup.com
/rof/article-abstract/22/1/337/2389555 by C

openhagen Business School user on 29 O
ctober 2018



Table IX. USV regressions

Panel A shows R2s (in percent) from regressing realized variance on the five PCs of yields.

Panel B shows in sample R2s for the nonlinear model from regressing model-implied instantan-

eous variance on the PCs of model-implied yields. Panel C shows in population R2s for the non-

linear model from regressing monthly realized variance (based on daily model-implied yields)

on the PCs of monthly yields (based on averages over daily model-implied yields) based

on a sample of 1,000,000 simulated months. Panels D and E show corresponding results for the

A1ð3Þ model, where only results for one maturity is shown because R2s are the same for all

maturities. Panel F shows the explanatory power of the PCs of residuals from the USV regres-

sions in Panels A and B.

Maturity PC1 PC1 � PC2 PC1 � PC3 PC1 � PC4 PC1 � PC5

Panel A: R2 in the data (1961–2014)

s ¼1 24.3 26.8 35.0 35.7 40.2

s ¼2 23.2 24.8 33.7 35.4 41.6

s ¼3 21.9 22.8 32.6 35.8 42.5

s ¼4 20.3 20.7 31.1 35.9 42.6

s ¼5 18.8 18.9 29.6 36.0 42.6

Panel B: In sample R2 for nonlinear three-factor model

s ¼1 21.6 21.8 44.0 47.9 55.1

s ¼2 19.1 19.1 42.3 49.2 57.4

s ¼3 17.5 17.6 41.8 50.9 59.9

s ¼4 16.7 16.8 42.0 52.9 61.7

s ¼5 16.9 17.2 42.4 54.6 62.1

Panel C: Population R2 for nonlinear three-factor model

s ¼1 31.8 32.7 40.8 46.0 56.9

s ¼2 32.8 33.8 40.7 48.6 60.8

s ¼3 32.9 34.2 40.1 50.3 63.4

s ¼4 32.6 34.4 39.2 51.0 65.0

s ¼5 31.9 34.7 38.3 51.0 66.1

Panel D: In sample R2 for A1ð3Þ model

s ¼ 1; . . .; 5 21.5 22.3 100.0 100.0 100.0

Panel E: Population R2 for A1ð3Þ model

s ¼ 1; . . .; 5 0.0 0.0 45.8 45.8 45.8

Panel F: In sample PC analysis of USV regression residuals

Data 91.8 98.7 99.9 100.0 100.0

Nonlinear model 97.9 99.9 100.0 100.0 100.0
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The actual R2 of USV regression (53) reported in Panel A of Table IX are not directly

comparable to the in sample R2 of USV regression (54) reported in Panel B for the non-

linear model and Panel C in the A1ð3Þ model because realized variance based on daily

data is a noisy proxy for yield variance. To check whether the nonlinear model can quan-

titatively capture USV in the data, we simulate 1,000,000 months of daily data (with 21

days in each month), compute the monthly realized variance and monthly average yield,

and run the same URP regression as in the data, that is, regression (53). Panel C shows

that the population R2s for the nonlinear model are very similar to the in sample R2 of

Panel B where we use instantaneous variance instead of realized variance, that is, the

average R2 is 39.8% when including the first three PCs. Hence, our results are robust to

taking into account that realized variance based on daily data is a noisy proxy for in-

stantaneous variance. Panel E shows that the average population R2 is 45.8% in the A1ð3
Þ model when regressing realized variance on the first three PCs of yields, which brings

the population R2s much closer to the R2s in the data. However, the population R2s

when using only one or two PCs in the A1ð3Þ model are zero which is strongly at odds

with the data.24

Bikbov and Chernov (2009) discuss how measurement error due to microstructure ef-

fects such as the bid-ask spread in option and bond prices affects the explanatory power

of USV regressions. Collin-Dufresne and Goldstein (2002) argue that measurement error

cannot be the reason for low R2s in USV regressions because there is a strong factor

structure in the regression residuals across bond maturities. Panel F of Table IX confirms

the factor structure in the data because the first PC of the residuals �1t ; . . . ; �5t of the USV

regression (53) explains 91.8% of the total variation in the USV residuals. Similarly, the

first PC explains 98% of the variation in the residuals of USV regression (54) implied by

the nonlinear model. Hence, our nonlinear model can capture the low explanatory

power and the strong residual factor structure of the USV regressions that is observed in

the data.

Collin-Dufresne and Goldstein (2002) introduce knife edge parameter restrictions in

affine models such that volatility state variable(s) do not affect bond yields, the so-called

USV models. The most commonly used USV models—the A1ð3Þ and A1ð4Þ—have one

factor driving volatility and this factor does not affect yields. These models generate

zero R2s in the above USV regression in population, inconsistent with the empirical

evidence. In contrast, the nonlinear model retains a parsimonious three-factor structure

and yet can generate R2s in USV regressions which are broadly in line with those in

the data.

4.3 Linearity in the Cross-Section of Yields

The nonlinear bond pricing model allows us to capture the observed time variation in

the mean and volatility of excess bond returns. However, Balduzzi and Chiang (2012)

show that in the cross-section there is an almost linear relation between yields of

24 Since measurement errors when using realized variance in the A1ð3Þ model result in a drop in R2s

from 100% to 45.8%, an interesting question is if the population R2s in the nonlinear model in Panel

C would be substantially higher if instantaneous variance is used instead of realized variance.

The answer is no. If instantaneous model-implied variance is used the average R2 is 48.4% instead

of 43.6% in Panel C.
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different maturities. To check whether the nonlinear model captures the cross-sectional

linearity we follow Duffee (2011a) and determine the PCs of zero-coupon bond yield

changes with maturities ranging from 1 to 5 years and regress the yield changes of each

bond on a constant and the first three PCs. The results for the data (based on 634 obser-

vations) and the three models (based on 1 million simulated observations) are shown in

Table X.

Panel A of Table X shows that the first three PCs describe almost all the variation of

bond yield changes in the nonlinear model which is consistent with the data. Moreover,

Panel B of Table X shows that the population loading for each yield on the level, slope, and

curvature factor in the nonlinear model is similar to the data. We conclude that the cross-

sectional variation of bond yields implied by the nonlinear model is well explained by the

first three PCs and no yield breaks this linear relation.

5. One Factor Model—an Illustration

In this section, we estimate a one-factor nonlinear model to highlight the role of

nonlinearity in a simple setting. Table XI shows the estimated parameters with asymptotic

standard errors (in parenthesis) based on the sample period 1961:07–2014:04. Panel A of

Figure 6 shows the stochastic weight s(X), defined in Equation (8), over the sample period.

The dynamics of s(X) in the one-factor model are similar to the dynamics in the three-

factor model—shown in Figure 2—although s(X) moves closer to zero in the three-factor

model.

Panel B of Figure 6 shows bond yields as a function of the state variable X. The relation

between yields and X is close to linear for low Xs, while for high Xs the rate of change picks

up and yields increase more rapidly with X. The reason is that s(X) starts to move away

from one as X increases as seen in Panel C and moreover, the speed with which s(X) moves

away from one increases for high Xs. Hence, for a given change in X, yields respond more

for a high X, that corresponds to a high yield environment than for a low X, that corres-

ponds to a low yield environment. Taken together, yield variances must be substantially

higher for high yield environments than for low yield environments, which Panel D indeed

shows. Moreover, the nonlinear relation between yields and their variances shown in Panel

D leads to USV. Specifically, Panel B in Table XII shows that the first PC of yields only ex-

plains between 52% and 63% of yield variance in sample. In contrast, in any affine one-

factor stochastic volatility model the R2 is 100%.

Panel E of Figure 6 shows the relation between yields and instantaneous expected excess

returns. In a standard affine one-factor model the relation is linear, but we see that in the

nonlinear model there is a U-shaped relation. This nonlinearity creates URP in the model.

Indeed, Panel A in Table XII shows that the first PC of yields only explains between 13.0%

and 19.9% of the variation in expected excess returns. Given the U-shaped relation be-

tween excess returns and yields it is not surprising that the level factor does not have more

explanatory power but it provides a stark contrast to one-factor affine models where the

first PC always explains 100%.

Finally, Figure 6’s Panel F shows that the relation between the yields themselves is ap-

proximately linear. Thus, although there are significant nonlinear effects in the time series

of excess returns and yield volatilities, there is an approximately linear relation between

yields in the cross-section which is consistent with the data.
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Table X. PC analysis of yields

Principal Components (PCs) are constructed from a panel of constant-maturity zero-coupon

bond yields with maturities ranging from 1 to 5 years. The contribution of the first PC, the first

and second PC, and the first, second, and third PC to the total variation in the five bond yields

are shown in Panel A. In Panel B yields for each bond are then regressed on the first three PCs

and a constant (omitted). Actual PC contributions, slope coefficients, and R2s are computed

using monthly data of 1- to 5-year zero-coupon bond yields from 1961:07 to 2014:04 obtained

from Gurkaynak, Sack, and Wright (2007). For all three models population PC contributions,

population slope coefficients, and population R2s are based on one simulated sample path of

1,000,000 months.

PC1 PC1 � PC2 PC1 � PC3

Panel A: PCs of yields

Data 99:1909 99:9779 99:9996

Nonlinear model 99:6866 99:9977 100:0000

A1ð3Þ model 99.9738 100.0000 100.0000

A0ð3Þ model 99:3788 99:9819 100:0000

Panel B: Linearity in the cross-section of yields

Maturity PC1 PC2 PC3 R2

Data (1961–2014)

s ¼ 1 0:47 �0:72 0:48 1:00

s ¼ 2 0:46 �0:22 �0:52 1:00

s ¼ 3 0:45 0:12 �0:46 1:00

s ¼ 4 0:43 0:36 �0:02 1:00

s ¼ 5 0:42 0:54 0:54 1:00

Nonlinear three-factor model in population

s ¼ 1 0:45 �0:67 0:52 1:00

s ¼ 2 0:45 �0:29 �0:37 1:00

s ¼ 3 0:45 0:04 �0:52 1:00

s ¼ 4 0:45 0:33 �0:17 1:00

s ¼ 5 0:44 0:59 0:54 1:00

A1ð3Þ model in population

s ¼ 1 0:51 �0:66 0:53 1:00

s ¼ 2 0:48 �0:21 �0:58 1:00

s ¼ 3 0:44 0:14 �0:41 1:00

s ¼ 4 0:41 0:39 0:04 1:00

s ¼ 5 0:38 0:58 0:46 1:00

A0ð3Þ model in population

s ¼ 1 0:47 �0:72 0:47 1:00

s ¼ 2 0:46 �0:21 �0:52 1:00

s ¼ 3 0:45 0:13 �0:46 1:00

s ¼ 4 0:43 0:36 �0:01 1:00

s ¼ 5 0:42 0:54 0:54 1:00
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Figure 6. Stochastic weight, yields, volatilities, and excess returns in a one-factor nonlinear model.

Panel A shows the estimated stochastic weight on the Gaussian base model for the sample period

1961–2014 and Panel C shows it as function of the factor X. Panels B and F show yields as function of

the factor X and the 1-year yield, respectively. Panels D and E show yield variance and expected ex-

cess returns as a function of the 1-year yield. The parameters for the one-factor nonlinear model are

estimated using yields and realized yield variance of zero-coupon Treasury bonds with maturities

ranging from 1 to 5 years. The range of X on the x-axis equals the range of X in the sample period

1961–2014.

Table XI. Parameter estimates of the one-factor nonlinear model

This table contains parameter estimates and asymptotic standard errors (in parenthesis) for the

nonlinear one factor model. The parameter estimates are based on yield and realized variance

data for the sample period 1961:07–2014:04. The bond maturities range from 1 to 5 years and

the data are obtained from Gurkaynak, Sack, and Wright (2007). The UKF is used to estimate

the nonlinear model.

j q0 qX k0 kX c b ry rrv

0:04027
ð0:03695Þ

0:03061
ð0:06164Þ

0:01093
ð0:0001309Þ

�0:6473
ð0:5656Þ

0:05966
ð0:03703Þ

0:01456
ð0:03452Þ

�0:4206
ð0:003205Þ

0:003122
ð0:0004019Þ

0:0001671
ð1:161e�05Þ
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6. Conclusion

We introduce a new reduced-form term structure model where the short rate and market

prices of risk are nonlinear functions of Gaussian state variables and derive closed-form so-

lutions for yields. The nonlinear model with three Gaussian factors matches both the time-

variation in expected excess returns and yield volatilities of US Treasury bonds from 1961

to 2014. Because there are nonlinear relations between factors, yields, and variances, the

model exhibits features consistent with empirical evidence on URP and USV. We are not

aware of any term structure models—in particular a model with only three factors—that

have empirical properties consistent with evidence on time-variation in expected excess re-

turns and volatilities, URP, and USV.

Although our empirical analysis has focused on a nonlinear generalization of an affine

Gaussian model, it is possible to generalize a wide range of term structure models such as

affine models with stochastic volatility and quadratic models. Our generalization intro-

duces new dynamics for bond returns while keeping the new model as tractable as the

standard model. Furthermore, the method extends to processes such as jump-diffusions and

continuous time Markov chains. We explore this in Feldhütter, Heyerdahl-Larsen, and

Illeditsch (2016).

Appendix A: General Nonlinear Gaussian Model

In this section, we provide closed-form solutions for a more general class of nonlinear term

structure models, prove Theorem 1, and relate our results to the class of reduced-form asset

pricing models with closed-form solutions discussed in Duffie, Pan, and Singleton (2000)

and Chen and Joslin (2012).

Table XII. URP and USV regressions in the one-factor nonlinear model

Panel A shows in sample R2s from regressions of model-implied 1-year excess returns on the

PCs of model-implied yields. Panel B shows in sample R2s from regressing model-implied in-

stantaneous variance on the PCs of model-implied yields. Model-implied PCs are constructed

from a panel of constant-maturity zero-coupon bond yields with maturities ranging from 1- to

5- years. The in sample results are based on the sample period 1961:07–2014:04.

Maturity PC1 PC1 � PC2 PC1 � PC3 PC1 � PC4 PC1 � PC5

Panel A: In sample R2 for nonlinear one-factor model

s ¼2 13.0 69.3 98.1 98.4 100.0

s ¼3 14.4 73.2 98.1 98.4 100.0

s ¼4 16.7 76.7 98.1 98.4 100.0

s ¼5 19.9 79.9 98.1 98.4 100.0

Panel B: In sample R2 for nonlinear one-factor model

s ¼ 1 52.0 64.8 96.1 96.8 99.9

s ¼ 2 55.1 68.2 96.6 97.2 99.9

s ¼ 3 57.9 71.3 97.0 97.5 100.0

s ¼ 4 60.4 73.9 97.4 97.8 100.0

s ¼ 5 62.7 76.2 97.7 98.0 100.0
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A.1 The Stochastic Discount Factor

Let c denote a nonnegative constant and M0ðtÞ a strictly positive stochastic process with dy-

namics given in Equation (3). The SDF is defined as

MðtÞ ¼M0ðtÞð1þ ce�b0XðtÞÞa; (56)

where b 2 Rd and a 2 N .

A.2 Closed-Form Bond Prices

We show in the next theorem that the price of a bond is a weighted average of bond prices

in artificial economies that belong to the class of essentially affine Gaussian term structure

models.

Theorem 2. The price of a zero-coupon bond that matures at time T is

Pðt;TÞ ¼
Xa

n¼0

snðtÞPnðt;TÞ; (57)

where

Pnðt;TÞ ¼ eAnðT�tÞþBnðT�tÞ0XðtÞ; (58)

snðtÞ ¼
a

n

 !
cne�nb0XðtÞ

1þ ce�b0XðtÞ
� �a : (59)

The coefficient AnðT � tÞ and the d-dimensional vector BnðT � tÞ solve the ordinary differ-

ential equations given in Equations (10) and (11).

Proof: Using the binomial expansion theorem, the SDF in Equation (56) can be expanded as

MðtÞ ¼
Xa

n¼0

MnðtÞ; (60)

where

MnðtÞ ¼
a

n

 !
cne�nb0XðtÞM0ðtÞ: (61)

Each summand can be interpreted as a SDF in an artificial economy.25 The dynamics of the

strictly positive stochastic process MnðtÞ are

dMnðtÞ
MnðtÞ

¼ �rnðtÞdt � KnðtÞ0dWðtÞ; (62)

where

KnðtÞ ¼ K0ðtÞ þ nR0b; (63)

25 Similar expansions of the SDF appear in Yan (2008); Dumas, Kurshev, and Uppal (2009); Bhamra

and Uppal (2014); and Ehling et al. (2016).
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rnðtÞ ¼ r0ðtÞ þ nb0j �X�XðtÞ
� �

� n2

2
b0RR0b� nb0RK0ðtÞ: (64)

Plugging in for r0ðtÞ and K0ðtÞ, it is straightforward to show that KnðtÞ and rnðtÞ are affine

functions of X(t) with coefficients given in Equations (12)–(15). If MnðtÞ is interpreted as a

SDF of an artificial economy indexed by n then we know that bond prices in this economy be-

long to the class of essentially (exponential) affine Gaussian term structure models and hence

Pnðt;TÞ ¼ eAnðT�tÞþBnðT�tÞ0XðtÞ; (65)

where coefficient AnðT � tÞ and the d-dimensional vector BnðT � tÞ solve the ordinary dif-

ferential equations (10) and (11). Hence, the bond price is

Pðt;TÞ ¼
Xa

n¼0

snðtÞPnðt;TÞ; (66)

where snðtÞ is given in Equation (59).

Proof of Theorem 1. Set a¼ 1 in Theorem 2.

A.3 Expected Return and Bond Volatility

Applying Ito’s lemma to Equation (56) leads to the dynamics of the SDF:

dMðtÞ
MðtÞ ¼ �rðtÞ dt � KðtÞ0dWðtÞ; (67)

where

rðtÞ¼ r0ðtÞ þ a 1� sðtÞð Þb0j �X�XðtÞ
� �

� að1� sðtÞÞb0RK0ðtÞ

� a
2

1� sðtÞð Þ a 1� sðtÞð Þ þ sðtÞð Þb0RR0b:
(68)

and

KðtÞ ¼ K0ðtÞ þ að1� sðtÞÞR0b: (69)

Let xnðt;TÞ denote the contribution of each artificial exponential affine bond price to the

total bond price. Specifically,

xnðt;TÞ ¼
Pnðt;TÞsnðtÞ

Pðt;TÞ : (70)

The dynamics of the bond price P(t, T) are

dPðt;TÞ
Pðt;TÞ ¼ rðtÞ þ KðtÞ0rðt;TÞ

� �
dt þ rðt;TÞ0dWðtÞ; (71)

where

r t;Tð Þ ¼ R0
Xa

n¼0

xn t;Tð ÞBn T � tð Þ þ b
Xa

n¼0

n xn t;Tð Þ � a 1� s tð Þð Þ
 ! !

: (72)

A.4 Link to Reduced-Form Asset Pricing Models

How is this model related to the large literature on reduced-form asset pricing models with

closed-form solutions? At a first glance it does not seem to be related because the Gaussian
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state dynamics of X(t) under the data generating or physical measure are no longer

Gaussian under the risk neutral measure Q. Specifically,

dXðtÞ ¼ ðj �X� jXðtÞ � RKðtÞÞ dt þ RdWQðtÞ; (73)

where KðtÞ, given in Equation (69), is a nonlinear function of X(t) and

dQ ¼ e
�1

2

Ð t

0
KðaÞ0KðaÞda�

Ð t

0
KðaÞ0dWPðaÞ

dP: (74)

However, we can compute the state dynamics under the risk neutral measure in the bench-

mark model defined as

dQ0 ¼ e
�1

2

Ð t

0
K0ðaÞ0K0ðaÞda�

Ð t

0
K0ðaÞ0 dWPðaÞ

dP; (75)

where K0ðtÞ, which is given in Equation (5), is an affine function of X(t) and thus Gaussian

under Q0. Specifically,

dXðtÞ ¼ ðj �X� Rk0;0 � ðjþ Rk0;XÞXðtÞÞdt þ RdWQ0 ðtÞ: (76)

Define

f XTð Þ ¼
1þ ce�b0XðTÞ
	 
a

1þ ce�b0XðtÞ
� �a (77)

and rewrite the bond price as an expectation under the risk neutral measure in the bench-

mark model. Specifically,

Pðt;TÞ ¼ Et
MðTÞ
MðtÞ

� �
¼ Et

M0ðTÞ
M0ðtÞ

f XTð Þ
� �

¼ EQ0

t e
�
Ð T

t
r0ðaÞda

f XðTÞð Þ
� �

;

(78)

where r0ðtÞ, given in Equation (4), is affine in X(t). Duffie, Pan, and Singleton (2000) and

Chen and Joslin (2012) show that the expectation in Equation (78) can be solved in closed

form if f ðxÞ ¼
P

nðcn þ vnxÞebnx, the short rate is affine in X(t), and X(t) is Gaussian under

Q. As shown in the proof of Theorem 1, the function f ðXtÞ can be expanded into the expo-

nential polynomial

f XTð Þ ¼
Xa

n¼0

a

n

0
@

1
Acn

1þ ce�b0XðtÞ
� �a e�nb0XðTÞ ¼

Xa

n¼0

vne�nb0XðTÞ (79)

using the Binomial expansion theorem and hence the bond price is given in closed form.

B. Equilibrium Models

In this section, we show that the functional form of the state price density in Equations (2)

and (56) naturally comes out of several equilibrium models.26 We need to allow for state

26 Chen and Joslin (2012) provide an alternative way to solve many of these equilibrium models that

is based on a nonlinear transform of processes with tractable characteristic functions.
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variables that follow arithmetic Brownian motions and hence we rewrite the dynamics of

the state vector in Equation (1) in the slightly more general form

dXðtÞ ¼ ðh� jXðtÞÞdt þ RdWðtÞ; (80)

where h is d-dimensional and j and R are d�d-dimensional.

In what follows, the standard consumption-based asset pricing model with a representa-

tive agent power utility and log-normally distributed consumption will serve as our bench-

mark model. Specifically, the state price density takes the following form:

M0ðtÞ ¼ e�qtCðtÞ�R; (81)

where R is the coefficient of RRA and C(t) is aggregate consumption with dynamics

dCðtÞ
CðtÞ ¼ lCdt þ r0CdWðtÞ: (82)

The short rate and the market price of risk are both constant and given by

K0 ¼ RrC (83)

r0 ¼ qþ RlC �
1

2
R Rþ 1ð Þr0CrC: (84)

Table XIII summarizes the relation between the nonlinear term structure models and the

equilibrium models discussed in this section.

B.1 Two Trees

Cochrane, Longstaff, and Santa-Clara (2008) study an economy in which aggregate con-

sumption is the sum of two Lucas trees. In particular they assume that the dividends of each

tree follow a geometric Brownian motion

dDiðtÞ ¼ DiðtÞðlidt þ r0idWðtÞÞ: (85)

Aggregate consumption is CðtÞ ¼ D1ðtÞ þD2ðtÞ. There is a representative agent with power

utility and risk aversion R. Hence, the SDF is

Table XIII. Equilibrium models

The table shows various equilibrium models and how they map into the nonlinear term struc-

ture models.

Model N d X a c b Stationary

Two trees 1 2 log ðD1ðtÞ=D2ðtÞÞ �R 1 1 No

Multiple consumption goods 1 2 log ðD1ðtÞ=D2ðtÞÞ � R
b

1�/
/

	 
1�b
b No

External habit formation 1 1 X R 1 b Yes

Heterogeneous beliefs 1 1 log ðkðtÞÞ R 1 � 1
R No

HARA utility 1 1 log ðb=CðtÞÞ �R 1 1 No
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MðtÞ ¼ e�qtCðtÞ�R

¼ e�qt D1ðtÞ þD2ðtÞð Þ�R

¼ e�qtD1ðtÞ�R 1þD2ðtÞ
D1ðtÞ

� ��R

¼M0ðtÞ 1þ elog D2ðtÞð Þ�log D1ðtÞð Þ� ��R
;

(86)

where M0ðtÞ ¼ e�qtD�R
1 and XðtÞ ¼ log ðD1ðtÞ=D2ðtÞÞ. Equation (86) has the same form

as the SDF in Equation (56) with a 62 N . Specifically, c ¼ 1, b ¼ 1, and a ¼ �R. Note that

in this case the state variable is the log-ratio of two geometric Brownian motions and thus

j ¼ 0. The share sðXðtÞÞ and hence yields are not stationary.

B.2 Multiple Consumption Goods

Models with multiple consumption goods and CES consumption aggregator naturally fall

within the functional form of the SDF in Equation (56). Consider a setting with two con-

sumption goods. The aggregate output of the two goods are given by

dDiðtÞ ¼ DiðtÞðlidt þ r0idWðtÞÞ: (87)

Assume that the representative agent has the following utility over aggregate

consumption C:

uðC; tÞ ¼ e�qt 1

1� R
C1�R; (88)

where

CðC1;C2Þ ¼ /1�bCb
1 þ 1� /ð Þ1�bCb

2

	 
1
b
: (89)

We use the aggregate consumption bundle as numeraire, and consequently the state price

density is

MðtÞ ¼ e�qtCðtÞ�R

¼ /ð Þ
bR

1�be�qtD1ðtÞ�R 1þ 1� /
/

� �1�b D2ðtÞ
D1ðtÞ

� �b
 !�R

b

:
(90)

After normalizing Equation (90) has the same form as the SDF in Equation (56) with

a 62 N . Specifically, XðtÞ ¼ logðD1ðtÞ=D2ðtÞÞ; c ¼ 1�/
/

	 
1�b
; b ¼ b, and a ¼ � R

b. As in the

case with Two Trees, the share sðXðtÞÞ and hence yields are not stationary.

B.3 External Habit Formation

The utility function in Campbell and Cochrane (1999) is

UðC;HÞ ¼ e�qt 1

1� R
C�Hð Þ1�R; (91)

where H is the habit level. Rather than working directly with the habit level, Campbell and

Cochrane (1999) define the surplus consumption ratio s ¼ C�H
C . The SDF is

MðtÞ ¼ e�qtCðtÞ�RsðtÞ�R (92)
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¼M0ðtÞsðtÞ�R: (93)

Define the state variable

dXðtÞ ¼ jð �X�XðtÞÞdt þ bdWðtÞ; (94)

where j > 0; rc > 0 and b>0. Now let sðtÞ ¼ 1
1þe�bXðtÞ. Note that s(t) is between 0 and 1. In

particular, s(t) follows

dsðtÞ ¼ sðtÞðlsðtÞdt þ rsðtÞdWðtÞÞ; (95)

where

lsðtÞ ¼ 1� sðtÞð Þ bj �X�XðtÞ
� �

þ 1

2
1� 2sðtÞð Þb2b2

� �
(96)

rsðtÞ ¼ ð1� sðtÞÞbb: (97)

The functional form of the surplus consumption ratio differs from Campbell and Cochrane

(1999). However, note that the surplus consumption ratio is locally perfectly correlated

with consumption shocks, mean-reverting and bounded between 0 and 1 just as in

Campbell and Cochrane (1999). The state price density can be written as

MðtÞ ¼M0ðtÞð1þ e�bXðtÞÞR: (98)

The above state price density has the same form as Equation (56) with parameters c ¼ 1,

b ¼ b, and a ¼ R. Note that the state variable X in this case is mean-reverting and therefore

the share sðXðtÞÞ and hence yields are stationary.

B.4 Heterogeneous Beliefs

Consider an economy with two agents that have different beliefs. Let both agents have

power utility with the same coefficient of relative risk aversion, R. Moreover, assume that

aggregate consumption follows the dynamics in Equation (82). The agents do not observe

the expected growth rate and agree to disagree.27 The equilibrium can be solved by forming

the central planner problem with stochastic weight k that captures the agents’ initial relative

wealth and their differences in beliefs (see Basak (2000), e.g.),

UðC; kÞ ¼ max
fC1þC2¼Cg

1

1� R
C1�R

1 þ k
1

1� R
C1�R

2

� �
: (99)

Solving the above problem leads to the optimal consumption of the agents

C1ðtÞ ¼ sðtÞCðtÞ; (100)

C2ðtÞ ¼ ð1� sðtÞÞCðtÞ; (101)

where sðtÞ ¼ 1

1þkðtÞ
1
R

is the consumption share of the first agent and C is the aggregate con-

sumption. The state price density as perceived by the first agent is

27 The model can easily be generalized to a setting with disagreement about multiple stochastic

processes and learning. For instance, Ehling et al. (2016) show that in a model with disagreement

about inflation, the bond prices are weighted averages of quadratic Gaussian term structure

models.
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MðtÞ ¼ e�qtC1ðtÞ�R

¼ e�qtCðtÞ�RsðtÞ�R

¼M0ðtÞ 1þ e

1

R
log kðtÞð Þ

0
@

1
A

R

:

(102)

This has the same form as Equation (56) with XðtÞ ¼ logðkðtÞÞ, c ¼ 1, b ¼ � 1
R, and a ¼ R.

The dynamics of the state variable is driven by the log-likelihood ratio of the two agents

and consequently the share sðXðtÞÞ and hence yields are not stationary.

B.5 Hara Utility

Consider a pure exchange economy with a representative agent with utility

uðt; cÞ ¼ e�qt

1�R Cþ bð Þ1�R, where R > 0 and b > 0. We can write the SDF as

MðtÞ ¼ e�qtCðtÞ�R

¼ e�qt CðtÞ þ bð Þ�R

¼ e�qtCðtÞ�R 1þ b

CðtÞ

� ��R

¼M0ðtÞ 1þ elog bð Þ�log CðtÞð Þ� ��R
:

(103)

After normalizing Equation (103) has the same form as the SDF in Equation (56) with

a 62 N . Specifically, XðtÞ ¼ logðb=CðtÞÞ, c ¼ 1, b ¼ 1, and a ¼ �R. Similarly to the model

with Two Trees and multiple consumption goods, the share sðXðtÞÞ and hence yields are

nonstationary as the ratio b=CðtÞ will eventually converge to zero or infinity depending on

the expected growth in the economy.

C. Gauss–Hermite Quadrature

While bond prices and bond yields are given in closed form, conditional moments of yields

and bond returns are not. However, it is straightforward to calculate conditional expect-

ations using Gauss–Hermite polynomials because the state vector X(t) is Gaussian.28

In this section, we illustrate how to calculate the expectation of a function of Gaussian

state variables. Let lX and RX denote the conditional mean and variance of X(u) at time

t<u. Let f ðXðtÞÞ be a function of the state vector at time t. For instance, if you want to cal-

culate at time t the n-th uncentered moment of the bond yield with maturity s at time u,

then f ðXðuÞÞ ¼ ðyðsÞðXðuÞÞÞn. Hence, the conditional expectation of yðsÞðXðuÞÞ at time t is

Et f XðuÞð Þ½ � ¼
ð
Rd

f ðxÞ 1

2pð ÞdjRXj
	 
0:5

e�
1
2 x�lXð Þ0R�1

X x�lXð Þdx: (104)

Define y ¼
ffiffiffi
2
p

r�1
X ðx� lXÞ where rX is determined by the Cholesky decomposition of

RX ¼ rXr0X. Hence, we can write Equation (104) as

28 For more details see Judd (1998).
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p�
d
2

ð
Rd

f ð
ffiffiffi
2
p

rXyþ lXÞe�y0ydy: (105)

Let gðyÞ ¼ f ð
ffiffiffi
2
p

rXyþ lXÞ. We set d¼ 3 in the empirical section of the paper and thus the

integral in Equation (105) can be approximated by the n point Gauss–Hermite quadrature

ð
Rd

f ð
ffiffiffi
2
p

rXyþ lXÞe�y0ydy �
Xn

i¼1

Xn

j¼1

Xn

k¼1

wiwjwkgðy1ðiÞ; y2ðjÞ; y3ðkÞÞ; (106)

where wi are the weights and ylðiÞ are the nodes for the n point Gauss–Hermite quadrature

for i ¼ 1; ::; n and l ¼ 1; ::; 3. We use n ¼ 4 in Equation (106).
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