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1 Introduction

The portfolio choice literature has explored a number of factors potentially relevant to

investors: return predictability, stochastic volatility, stochastic correlation, jumps in stock

prices, the housing market, and human capital among others.1 The broad conclusion is

that these features are important for investors. These studies assume that investors know

the correct model and model parameters. In this paper, we investigate the importance of

parameter uncertainty and potential model misspecification to investors.

We focus on bond markets and estimate four term structure models by Markov Chain

Monte Carlo (MCMC) on a panel data set of U.S. Treasury yields with daily observations

over the period 1971-2006. The models are one- and three-factor affine models with both

constant (completely affine) and time-varying (essentially affine) risk premia. We find that

market price of risk parameters are imprecisely estimated; confidence intervals are wide

and often parameters are not statistically significant. We determine the optimal dynamic

investment strategy in all four models. Since the portfolio allocations are sensitive to

market price of risk parameters, the allocations have wide confidence intervals as well.

Often it is not even clear whether the investor should take a short or a long position in a

given bond.

We investigate how the expected utility of the investor is affected by the large uncer-

tainty in the market prices of risk by taking a Bayesian approach. In the first part of our

empirical analysis, we assume the investor knows the true model but there is uncertainty

regarding the estimated parameters. Assume we know the true parameters of the model

and the investor’s estimated parameters are different from the true ones. In this case the

investor’s investment strategy is suboptimal, and we define the conditional utility loss as

the fraction of initial wealth the investor would be willing to sacrifice to be able to follow

the optimal strategy based on the true parameters. In practice we do not know the true

parameters, but our MCMC estimation gives us a posterior distribution of the true param-

eters. For a given portfolio strategy, we define the expected utility loss due to parameter

uncertainty as the conditional utility loss integrated over the posterior distribution of the

1See e.g. Liu, Longstaff, and Pan (2003), Liu and Pan (2003), Cocco, Gomes, and Maenhout (2005),

Yao and Zhang (2005), Chacko and Viceira (2005), Sangvinatsos and Wachter (2005), Liu (2007), Benzoni,

Collin-Dufresne, and Goldstein (2007), Munk and Sørensen (2010), Buraschi, Porchia, and Trojani (2010),

Koijen, Nijman, and Werker (2010), Kraft and Munk (2011), and Lynch and Tan (2011).
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true parameters. The expected utility loss can be interpreted as the fraction of initial

wealth the investor is willing to give up to live in a world with no parameter uncertainty.

We find that parameter uncertainty leads to large expected utility losses. What is

crucial in determining the losses is whether risk premia are time-varying or not. If risk

premia are time-varying there is a significant probability of a future scenario of high

expected excess returns in which modest deviations in the risk premium parameters lead

to very different portfolio weights. In these scenarios the investor’s portfolio weights are

often off because of parameter uncertainty and this leads to high expected utility losses.

For example, in the three-factor essentially affine model - the model used by Sangvinatsos

and Wachter (2005) - an investor with a relative risk aversion of five and an investment

horizon of five years has an expected utility loss of 66%. In contrast, the three-factor

completely affine model only has an expected utility loss of 4.7%.

Although there are high expected utility losses due to parameter uncertainty in the

three-factor essentially affine model, the model better captures time-variation in expected

excess returns compared to the three simpler models (Dai and Singleton (2002) and Duffee

(2002)).2 In the second part of the empirical analysis, we account for parameter uncer-

tainty as in the first part but we assume that the three-factor essentially affine model

describes the true yield curve dynamics. Under this assumption, we calculate expected

utility losses for investors basing their strategies on one of the three simpler models. By

doing so, we quantify the tradeoff between the severity of parameter uncertainty and cap-

turing the predictability in bond returns. In the three-factor essentially affine model the

expected utility losses are due to parameter uncertainty, while in the three simpler models

the losses are due to parameter uncertainty and model misspecification.

We find that long-term investors with moderate to high risk aversion are better off

basing their portfolio decisions on more parsimonious models, since expected utility losses

for these models due to both parameter uncertainty and model misspecification are smaller

than the expected utility loss for the true model solely due to parameter uncertainty. As

mentioned earlier, an investor with a relative risk aversion of five and an investment horizon

2A number of recent papers argue that a component of the variation in bond risk premia is unspanned

by the term structure; see, e.g. Joslin, Priebsch, and Singleton (2010) and Duffee (2011). Since the

unspanned component is also associated with significant uncertainty, our results likely carry over to such

an extended setting.
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of five years has an expected utility loss of 66% when basing his strategy on the ”true”

three-factor model with time-varying risk premia. Basing his strategy on a misspecified

one-factor model with constant risk premia leads to an expected utility loss of only 54%

although there is model misspecification on top of parameter uncertainty. This is because

the bond holdings are less extreme in the simple model and therefore the probability of

having a poor performance is much smaller than in the ”true” complex model. Hence, the

suboptimal investment strategy based on the one-factor model with constant risk premia

carries a 18% smaller utility loss compared to the investment strategy based on the ”true”

model. For a higher level of relative risk aversion or a longer investment horizon the

difference in the average utility loss becomes even bigger.

For most of the paper, we compute expected utility losses assuming that the economy is

in steady state. To see if there is significant variation over time, we also calculate expected

utility losses where we condition on the current yield curve. For most of the sample period,

the expected utility losses are higher for the three-factor essentially affine model relative

to the simpler models. Interestingly, in the beginning of the 90’s and the early part of

the 00’s the investor prefers to follow the three-factor model. In these periods the yield

curve was steep and, as shown by Campbell and Shiller (1991), these are times when

excess returns are high. Only an investor basing his portfolio choice on the three-factor

essentially affine model can exploit the high bond risk premia during these episodes. Thus,

the typical investor should not avoid the three-factor essentially affine model altogether,

but rather know when to use it.

To the best of our knowledge, our paper is the first to study, within a realistic setting,

the quantitative effects on expected utility of parameter uncertainty and the tradeoff

between parameter uncertainty and model misspecification. Our results strongly suggest

that investors should incorporate parameter uncertainty into their decision process. Klein

and Bawa (1976) is one of the first papers to study the effect of parameter uncertainty

on optimal portfolio strategies. Barberis (2000) incorporates parameter uncertainty in

a setting with predictability in asset returns. Other papers include Barry and Brown

(1985), Brennan (1998), Xia (2001), Maenhout (2004, 2006), Brandt, Goyal, Santa-Clara,

and Stroud (2005), and Johannes, Korteweg, and Polson (2011). So far, the models

have been very stylized because incorporating parameter uncertainty in realistic, dynamic

settings quickly becomes difficult. From an investor’s perspective, our results suggest that
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incorporating parameter uncertainty in existing models is more important than building

new models that capture additional features of the investment universe. Consistent with

this conclusion Sarno, Schneider, and Wagner (2012) find that three-factor affine models

forecast poorly out-of-sample.

The remainder of the paper is organized in the following way. Section 2 sets up the

modeling framework, and specifies the investment strategies. Section 3 discusses the data

and the estimation procedure. Section 4 presents the results. Section 5 summarizes and

concludes.

2 The general setup

In this section we specify our assumptions about the dynamics of the term structure of

interest rates and the preferences of the investor. We derive the optimal investment strat-

egy in affine models and solve for the conditional utility loss associated with suboptimal

strategies.

2.1 The dynamic term structure model

We consider an arbitrage-free economy where trading takes place continuously in time.

We assume that the term structure of interest rates follow an affine dynamic term structure

model. More specifically, let rt denote the instantaneous interest rate and assume that

rt = δ0 + δ′XXt, (1)

where δ0 is a constant, δX is an m× 1 vector, and Xt = (X1t, X2t, . . . , Xmt)
′ is an m× 1

vector of state variables that follows the process

dXt = κ (θ −Xt) dt+ σX dzt (2)

under the physical measure P, where z = (zt) is a standard m-dimensional standard

Brownian motion. The m ×m constant matrix σX is assumed invertible and determines

the variance-covariance matrix of the state variables over the next instant, σXσ
′
X , κ is an

invertible m×m matrix, and θ is an m× 1 vector. Furthermore, the market price of risk

associated with the shock process z is assumed to be affine in X,

λt = λ0 + λXXt, (3)
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where λ0 is an m×1 vector and λX is an invertible m×m matrix. Following Duffee (2002),

the model is said to be completely affine if λX = 0 and essentially affine otherwise. It

follows from these assumptions that the dynamics of the state variables under the risk-

neutral probability measure Q is

dXt = κ̃
(
θ̃ −Xt

)
dt+ σX dz

Q
t , (4)

where z = (zQt ) is a standard Brownian motion under Q with dzQt = dzt + λtdt. Further-

more, κ̃ = κ+ σXλX and θ̃ = κ̃−1 (κθ − σXλ0).

As shown by Duffie and Kan (1996), the price of a zero-coupon bond maturing at T

takes the form P Tt = P T (t,Xt) where

P T (t,X) = exp
{
−A(T − t)−B(T − t)′X

}
,

and A : [0, T ] → R, B : [0, T ] → Rm are solutions to the system of ordinary differential

equations (ODEs):

∂B(τ)

∂τ
= δX − κ̃′B(τ) (5)

∂A(τ)

∂τ
= B(τ)′κ̃ θ̃ − 1

2
B(τ)′ σX σ

′
X B(τ)′ + δ0 (6)

with the boundary conditions A(0) = B(0) = 0. For some model specifications these

equations have explicit solutions; if not, the equations are easily solved numerically. The

dynamics of the zero-coupon bond price with maturity T follows from Ito’s lemma:

dP Tt
P Tt

=
(
rt −B(T − t)′σXλt

)
dt−B(T − t)′σXdzt. (7)

2.2 The investor

The investor can invest in an instantaneously risk-free asset, interpreted as short-term

cash deposits, which yields the continuously compounded rate of return rt. In addi-

tion, the investor can invest in n < ∞ zero-coupon bonds. We represent the investment

strategy of the investor by the n-dimensional continuous-time process π = (πt), where

πt = (π1t, π2t, . . . , πnt)
′ is the vector of fractions of wealth (”portfolio weights”) invested

in n different zero-coupon bonds at time t. The remaining fraction of wealth 1 − π′t1 is

invested in the instantaneously risk-free asset. We ignore intermediate consumption and

income other than financial returns and assume that the time-to-maturity of the bonds
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that the investor trades in are the same at all dates. Let τi, i = 1, . . . , n, denote the

time-to-maturity of the i’th bond in the portfolio. Further, let B be the m×n matrix with

the i’th column representing the B-vector associated with the i’th zero-coupon bond, i.e.,

B = (B(τ1), B(τ2), . . . , B(τn)) . (8)

For notational simplicity we suppress the dependence of B on the maturities of the bonds.

The volatility matrix of the n bonds is then −B′σX . Given a positive initial wealth W0

and an investment strategy πt in these n zero-coupon bonds, the investor’s wealth will

satisfy the self-financing condition

dWt = Wt

[
rt − π′tB′σXλt

]
dt−Wtπ

′
tB′σX dzt. (9)

For any other set of n non-redundant bonds (or other interest rate derivatives) there exists

a portfolio with the same sensitivity towards the exogenous shocks as the portfolio π of the

designated fixed-maturity bonds, and this equivalent portfolio is an easy transformation

of π.

We assume that the investor maximizes expected utility of wealth at some future date

T and that the utility function is of the CRRA type. The indirect utility is given as

J(W,X, t) = sup
(πs)s∈[t,T ]

 EW,X,t
[

1
1−γ W

1−γ
T

]
, γ > 1,

EW,X,t [lnWT ] , γ = 1,

(10)

where EW,X,t denotes the expectation operator given Wt = W and Xt = X under the

physical measure P, and γ is the constant relative risk aversion parameter. The optimal

investment strategy π∗ is the one satisfying (10).

2.3 The optimal investment strategy

If the m-factor version of the model (1)-(3) is assumed correct and the investor knows

the true parameters of this model, the technique applied by Liu (2007) and Sangvinatsos

and Wachter (2005) leads to a semi-analytical expression for the optimal portfolio strat-

egy and the associated expected utility. This involves trading in n = m bonds. For

completeness, we state the result here (see Appendix A for a proof):

Proposition 1 When the investor assumes the m-factor model (1)-(3) is correct, the

optimal investment strategy is to invest in n = m different zero-coupon bonds according to
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the portfolio weights

π∗(X, t) =
1

γ

(
−σ′XB

)−1
(λ0 + λXX)

+
γ − 1

γ

(
σ′XB

)−1
σ′X

(
F2(T − t) +

1

2

(
F3(T − t) + F3(T − t)′

)
X

) (11)

with the remaining wealth invested in short-term deposits. If the model assumed by the

investor is the data-generating process, the expected utility generated by this strategy is

J(W,X, t) =


1

1−γ

(
W eF1(T−t)+F2(T−t)′X+ 1

2
X′F3(T−t)X

)1−γ
, γ > 1,

lnW + F1(T − t) + F2(T − t)′X + 1
2X
′F3(T − t)X, γ = 1.

(12)

Here F1, F2, and F3 solve a system of ODEs stated in (21)–(23) in Appendix A.

The optimal investment strategy is composed of: a speculative portfolio (the first term

in (11)) and a hedge portfolio (the second term in (11)). The hedge portfolio describes

how the investor should optimally hedge against the changes in the investment opportunity

set as a result of stochastic variation in the short rate and in the market prices of risk.

The hedge portfolio consists of two components: the component involving F2 is due to

the stochastic variation in the short rate, whereas the component involving F3 is due to

the stochastic variation in the market price of risk vector. If market prices of risk are

constant – that is, λX = 0 – then F3 = 0 and the second component of the hedge portfolio

disappears. See Sangvinatsos and Wachter (2005) for a more detailed discussion of the

investment strategy.

2.4 Investment strategies

We will consider four different investment strategies:

(i) The investment strategy implied by a three-factor essentially affine model. This

strategy is given by (11) with m = n = 3.

(ii) The investment strategy implied by a completely affine model. This strategy is given

by (11) with m = n = 3 and λX = 0.

(iii) The investment strategy implied by a one-factor essentially affine model. This strat-

egy is given by (11) with m = n = 1.
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(iv) The investment strategy implied by a one-factor completely affine model. This strat-

egy is given by (11) with m = n = 1 and λX = 0.

In the empirical section we will quantify the impact of parameter uncertainty. To do

this, we need the expected utility of following an investment strategy implied by model i

with parameter vector Θ̂i given that the data-generating model is model j with parameter

vector Θj . Often, we will call Θ̂i for the investor’s estimated parameters. The models i

and j might be the same or it might be the case that model i is simpler than model j.

If the investment strategy is based on parameters different from the true parameters,

the strategy is suboptimal. This is also the case if the investment strategy is based on

a simpler model than the true model. Here ”simpler” means that some parameters are

set to zero or the number of factors is lower. In Appendix A we show that the expected

utility generated by such a suboptimal investment strategy is given by

Ĵ(W,X, t) =


1

1−γ

(
W eĈ1(T−t)+Ĉ2(T−t)′X+ 1

2
X′Ĉ3(T−t)X

)1−γ
, γ > 1,

lnW + Ĉ1(T − t) + Ĉ2(T − t)′X + 1
2X
′Ĉ3(T − t)X, γ = 1,

(13)

where the deterministic functions Ĉ1, Ĉ2, and Ĉ3 solve the system of ODEs stated in (28)–

(30) in Appendix A. The functions Ĉ1, Ĉ2, and Ĉ3 depend both on the true parameters of

the correct model and on the estimated parameters of the (possibly incorrect) model. We

use a hat (̂) when parameters are those estimated by the investor while there is no hat

on the true parameters. Likewise, quantities that depend on estimated parameters wear

a hat.

It might seem that there should be a hat on the latent factor X in (13) as well, since

the factor is also estimated. However, Collin-Dufresne, Goldstein, and Jones (2008) show

that any latent vector can - given the parameter values - be rotated into quantities that

are observable from the data. For a one-factor model the latent X can be rotated into the

short rate while for a three-factor model the state vector X can be rotated into the short

rate, slope, and curvature of the yield curve. For convenience, we keep the latent notation,

but one should think of them as the observable and model-independent quantities short

rate, slope, and curvature and we will at times suppress the dependence on them.3

3In the empirical section we rotate the latent factor in the one-factor essentially affine model into the

short rate before applying Proposition 2: drt = κ
(
θ̂ − rt

)
dt + σXδX dzt, where θ̂ = δXθ + δ0 and the

market price of risk is given by λ =
(
λ0 − λX

δX
δ0
)

+ λX
δX

r. For the three-factor essentially affine model
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By definition a suboptimal investment strategy will generate a lower level of ex-

pected utility than the optimal investment strategy. We define the conditional utility

loss L(Θ̂i|X, τ ; Θj) from following a suboptimal strategy implied by using model i with

estimated parameters Θ̂i as the maximum fraction of initial wealth that the investor

would sacrifice to be able to invest according to the optimal strategy implied by the

data-generating model j with parameters Θj . The conditional utility loss depends on the

current state X and the remaining investment horizon τ = T − t of the investor. By

definition, the conditional utility loss solves

Ĵ(W,X, t) = J
(
W{1− L(Θ̂i|X, τ ; Θj)}, X, t

)
. (14)

Straightforward calculations using (12) and (13) prove the following proposition:

Proposition 2 Assume that model i with parameter Θi is the data-generating process.

The conditional utility loss generated by an investment strategy implied by model j with

parameters Θ̂j is given by

L(Θ̂i|X, τ ; Θj) = 1− eĈ1(τ)−F1(τ)+(Ĉ2(τ)−F2(τ))
′
X+ 1

2
X′(Ĉ3(τ)−F3(τ))X (15)

for γ ≥ 1 and F1, F2, F3, Ĉ1, Ĉ2, and Ĉ3 are solutions to ODEs given in Appendix A.

In the following, we will often suppress the dependence of the loss on the state X and the

investment horizon τ and simply write it as L(Θ̂j |Θi). Obviously, 0 ≤ L(Θ̂j |Θi) ≤ 1 and

L(Θi|Θi) = 0.4

the empirical results are not very sensitive to - given the current yield curve - whether the state vector

of the supposedly true model or the state vector of the supposedly false model is used. For simplicity, we

have therefore chosen not to do the rotation in this case. For the completely affine models, the investment

strategy is not dependent on X.

4In fact, for some strategies, some (sufficiently long) investment horizons, and some values of the

parameter vector Θi, the loss can equal 100% if model i is an essentially affine model. This phenomenon

has been discussed in some stochastic volatility models for derivatives pricing, where it is termed “moment

explosion”, cf. Andersen and Piterbarg (2007) and Keller-Ressel (2011). It is related to the concept

of “Nirvana solutions” introduced by Kim and Omberg (1996) for a dynamic portfolio problem with a

stochastic Sharpe ratio of the risky asset: for some parameter settings (including a relative risk aversion

smaller than one) the investor can achieve an infinite expected utility. The mirror image is that some

strategies are so bad that, for some parameter settings (including a relative risk aversion exceeding one),

they will generate an expected utility of minus infinity. While interesting, it is beyond the scope of this

paper to precisely characterize such “anti-Nirvana strategies”.
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3 Estimation

In this section, we describe how we estimate the four models we examine in the em-

pirical section: the essentially and completely affine models with one or three factors.

3.1 Estimation procedure

To avoid overidentification we apply the parametrization of Dai and Singleton (2000)

and assume that

(a) θ̃ = κ̃−1 (κθ − σXλ0) = 0,

(b) σX equals the (m×m)-identity matrix, and

(c) κ̃ = κ+ σXλX is a (m×m)-lower triangular matrix.

We adopt a Bayesian approach and estimate the models by Markov Chain Monte Carlo

(MCMC) as proposed by Eraker (2001).5 MCMC has also been used for estimating term

structure models by, e.g., Ang, Dong, and Piazzesi (2007), Feldhütter (2008), Kaminska,

Vayanos, and Zinna (2011), and Sarno, Schneider, and Wagner (2011). At time t = 1, ..., T

we observe k yields which are stacked in a k-vector

Yt = (Y (t, τ1), ..., Y (t, τk))
′.

The yields are all observed with a measurement error

Yt = A+BXt + εt

where A is a k-vector and B is a k ×m matrix. We assume that the measurement errors

are independent and normally distributed with zero mean and common variance such that

εt ∼ N(0, D), D = ϕ2Ik,

where Ik denote the k × k identity matrix. To simplify the notation in the following, we

denote

ΘQ = (κ̃, δ0, δX) , ΘP = (λ0, λX) ,

5See Robert and Casella (2004) for a general introduction to MCMC and Johannes and Polson (2009)

for a survey of MCMC methods in financial econometrics.
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and Θ = (ΘQ,ΘP , D).

We are interested in samples from the target distribution p (Θ, X |Y ). The Hammersley-

Clifford Theorem (Hammersley and Clifford, 1970, and Besag, 1974) implies that samples

are obtained from the target distribution by sampling from a number of conditional distri-

butions. Effectively, MCMC solves the problem of simulating from a complicated target

distribution by simulating from simpler conditional distributions. If one samples directly

from a full conditional distribution, the resulting algorithm is the Gibbs sampler (Geman

and Geman, 1984). If it is not possible to sample directly from the full conditional distribu-

tion, one can sample by using the Metropolis-Hastings algorithm (Metropolis et al., 1953).

We use a hybrid MCMC algorithm that combines the Gibbs sampler and the Metropolis-

Hastings algorithm since not all the conditional distributions are known. Specifically, the

MCMC algorithm is given by6

p(ΘQ|ΘP , D,X, Y ) ∼ Metropolis-Hastings

p(λ0|Θ\λ0 , X, Y ) ∼ Normal

p(λX |Θ\λX , X, Y ) ∼ Normal

p(D|Θ\D, X, Y ) ∼ Inverse Wishart

p(X|Θ, Y ) ∼ Metropolis-Hastings

Details in the derivations of the conditionals and proposal distributions in the Metropolis-

Hastings steps are given in Appendix B.1. Both the parameters and the latent processes

are subject to constraints, and if a draw is violating a constraint it can simply be discarded

(Gelfand et al., 1992).

In estimating each model we use an algorithm calibration period of 3 million draws, a

burn-in period of 5 million draws, and an estimation period of 5 million draws. We keep

every 5,000’th draw in the estimation period, which leaves 1,000 draws. For each of the

four models we find our benchmark estimates among the 1,000 draws as follows. Following

Collin-Dufresne et al. (2008), let φi denote the ith parameter draw and let φ̃i denote the

same vector normalized by the posterior standard deviations. The benchmark estimate is

the draw i minimizing: ∑
j

∣∣∣φ̃j − φ̃i∣∣∣ .
6Here Θ\a denotes the parameter vector excluding the parameter a.
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This version of the multivariate posterior median ensures that parameter restrictions are

satisfied for our parameter estimates, which might not be the case if the point estimates

are based on univariate medians. For each parameter, we report the benchmark estimate

along with a univariate confidence band based on the 2.5% and the 97.5% percentile of

the 1,000 MCMC draws of the posterior distribution. Confidence bands for any quantity

derived from the parameters is calculated as follows: for each parameter draw the quantity

is calculated and a univariate confidence band is based on the 1,000 calculations of the

quantity.

3.2 Data

We use daily (continuously compounded) 1-, 2-, 3-, 5-, 7-, and 10-year zero-coupon

yields extracted from prices of off-the-run US Treasury securities for the period from

August 16, 1971 to August 21, 2006. Off-the-run securities are defined as securities that

are not among the two most recently issued securities with maturities of two, three, four,

five, seven, and ten years. The data set is discussed in detail in Gürkaynak et al. (2006)

and is posted on the website http://www.federalreserve.gov/pubs/feds/2006. Figure 1

depicts the time-series of the 1-, 5-, and 10-year yields.

[Figure 1 about here.]

4 Results

4.1 Parameter estimates

Tables 1, 2, and 3 display parameter estimates along with their confidence intervals

for the four models considered in the paper. The market price of risk parameters λ0

and λX are generally imprecisely estimated. For example, the estimate of λ0 in the one-

factor essentially affine model is 3.94 and the confidence band is from -0.33 to 9.18, so

the confidence band is several times wider than the parameter estimate. For comparison,

the estimate of δ0 in the same model is -0.387 and the confidence band is from -0.390 to

-0.385, so in this case the confidence band is tight. We also see that the confidence bands

are much wider in the essentially affine models compared to the completely affine models.

For example, the confidence band for λ0 is 15 times wider in the one-factor essentially
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affine model compared to the completely affine one-factor model. Also, many of the risk

premium parameters are not statistically significant. In the one-factor models 2 out of

3 are insignificant, while in the three-factor models 9 out of 15 are insignificant. Dai

and Singleton (2002) and Duffee (2002) simirlarly find that risk premium parameters are

difficult to estimate accurately.

[Table 1 about here.]

[Table 2 about here.]

[Table 3 about here.]

4.2 Investment strategies

We now explore the size and statistical precision of portfolio weights implied by affine

term structure models. As our benchmark case we consider an investor with an investment

horizon of 5 years and a relative risk aversion of γ = 5. We consider the four investment

strategies described in Section 2.4 and assume that the investor implements an investment

strategy based on the estimated parameter values of the relevant model. We assume that

the investor at every point in time can trade in a 1-year, 5-year, and 10-year zero-coupon

bond as well as the instantaneously risk-free asset. Investors following the strategy implied

by a one factor trade in only one bond, which we take to be the 5-year zero-coupon bond.7

For now, we assume that the economy is in steady state and set the state vector in (11)

equal to the unconditional mean under the actual measure P.8

[Table 4 about here.]

Table 4 displays the four investment strategies for an investor with a relative risk

aversion of γ = 5 and an investment horizon of 0, 5, and 10 years, respectively. Panel

A displays for the three-factor essentially affine model the portfolio weights along with

7The return an investor earns by following a one-factor strategy may depend on the time-to-maturity

of the bond, see e.g. Brennan and Xia (2002). However, the results are insensitive to which bond is used.

These results are available on request.

8As mentioned earlier the state vector can be viewed as the level, slope, and curvature of the yield

curve. The unconditional mean can therefore be viewed as the average slope, level, and curvature (as

defined in Collin-Dufresne, Goldstein, and Jones (2008)) through the sample.
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95% confidence bands at different investment horizons. The portfolio is highly levered

consistent with the portfolio weights reported by Sangvinatsos and Wachter (2005). The

confidence bands are wide and they suggest that it is not clear whether the investor should

take a long or a short position in a given bond. For example, at a five-year investment

horizon the investor has an estimated long position in the one-year bond of approximately

13 times his initial wealth. However, the 95% confidence interval goes from shorting the

bond in an amount of 35 times his wealth to going long in the bond in an amount of 65

times his wealth.

Compared to the 12 risk premium parameters in the essentially affine three-factor

model, the completely affine counterpart has only three. This leads to a reduced uncer-

tainty in the portfolio weights; the confidence bands in Panel B are narrower and it is

clear that the investor should borrow in the riskfree asset and go long in the one-year

bond. Still, the portfolio weights in the completely affine case are also large, the sizes of

the portfolio weights are statistically very uncertain, and for the five- and ten-year bonds

the portfolio weights are not statistically different from zero.

For the one-factor models in Panel C in Table 4 we no longer see the extreme portfolio

weights observed in the three-factor models. Furthermore, the confidence intervals are

much narrower because of the more precise estimation of the parameters as well as the

lower number of parameters used to calculate the strategy. The investment strategy in the

three-factor essentially affine model involves 25 parameters, whereas only four parameters

are used in the one-factor completely affine model. Even in this case, the portfolio weights

are not statistically different from zero.

4.3 Utility losses due to parameter uncertainty

The large uncertainty in portfolio weights documented in the previous section clearly

has an impact on the utility of investors. To investigate this impact we take a Bayesian

approach. In this section we assume that the investor is basing his investment strategy on

the correct data-generating model, but there is uncertainty about the parameters.

Recall that L(Θ̂|Θ) in (15) denotes the utility loss from following the strategy implied

by the parameter Θ̂ conditional on the true parameter vector being Θ.9 In this section we

9The dimensionality of Θ̂, Θ, and X are as follows. When we are calculating losses for the one-factor
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suppress the dependence of Θ̂i and Θj on the specific models i and j, since the models i

and j are the same. There is uncertainty regarding Θ and the MCMC estimation gives a

posterior distribution of Θ given the data denoted p(Θ|Y ). For each investment strategy

we compute an expected utility loss by integrating the conditional utility loss over the

posterior distribution of Θtrue:

L̄(Θ̂) =

∫
L(Θ̂|Θ)p(Θ|Y ) dΘ. (16)

We can interpret the expected utility loss as the fraction of wealth the investor is willing to

give up to live in a world without parameter uncertainty. Korteweg and Polson (2009) use

a similar approach to estimate the impact of parameter uncertainty on corporate credit

spreads.

Table 5 illustrates the expected utility losses due to parameter uncertainty in the four

models for different combinations of the risk aversion and the investment horizon. The

expected utility losses are large in the three-factor essentially affine model. For example,

Panel B shows that an investor with a risk aversion of γ = 5 and an investment horizon

of five years is willing to give up 66% of his wealth to avoid parameter uncertainty. This

compares to just 1.4% in the one-factor completely affine model. Thus, using a more

complex model carries a larger utility loss because of parameter uncertainty.

[Table 5 about here.]

For any given model and a given risk aversion the expected utility loss is obviously

increasing in the investment horizon. The impact of risk aversion on the utility loss depends

on the relative parameter sensitivity of the speculative portfolio and the hedge portfolio.

Table 5 shows that the utility loss is increasing in risk aversion over the 5- and 10-year

horizons in the three-factor essentially affine model, whereas the utility loss is decreasing

in risk aversion for the other models. Interestingly, the table shows that the utility loss

due to parameter uncertainty cannot be proxied by either the number of parameters or

the statistical uncertainty of the portfolio weights. The three-factor completely affine

completely affine model, both Θ̂ and Θ are 4 × 1 vectors, and X in (15) is the short rate. When we are

calculating losses for the three-factor essentially affine model, both Θ̂ and Θ are 25 × 1 vectors, and X

in (15) is a 3 × 1 vector containing the short rate, slope, and curvature of the yield curve. From this the

dimensionality in the one-factor essentially affine model and three-factor completely affine model should

be clear.
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model has 24 parameters compared to the five in the one-factor essentially affine model,

and the portfolio weights are more extreme and have larger confidence bands (when the

economy is in steady state) as seen in Table 4. Still, the expected utility loss for γ = 5

and investment horizon five years is only 4.7% in the three-factor completely affine model

compared to 11.3% in the one-factor essentially affine model. The reason is that the

one-factor essentially affine model has time-varying risk premia. The model has modest

portfolio weights in steady state, but when Treasury yields spike there are large expected

excess returns and the portfolio weights become large and uncertain with possible large

utility losses. In contrast, the three-factor completely affine model has constant portfolio

weights over time.10

To further examine the difference in utility losses in the four models, Figure 2 shows the

density of the utility losses for an investor with relative risk aversion γ = 5 and investment

horizon T = 5. The expected utility losses in the second column of Panel B in Tabel 5 are

the means in the distributions in the figure. We see that the combination of many risk

parameters and time-varying risk premia leads to high probability of seeing large losses in

the three-factor essentially affine model; the probability of seeing utility losses of 95% or

higher is 47%. In the one-factor essentially affine there is also a tail of large losses and the

probability of utility losses of 95% or more is 3%. In contrast, the probability of seeing

losses of 30% or more in the completely affine models is basically zero. The figure supports

the conclusion that the large expected utility losses in the essentially affine models relative

to completely affine models is because there is a significant risk that the investor will suffer

large losses.

[Figure 2 about here.]

Table 6 shows expected utility losses when we assume that market prices of risk are

known with certainty.11 We see that expected utility losses are miniscule and economically

insignificant, so risk premium parameters determine almost exclusively expected utility

losses. Market prices of risk are determined by the time series of yields while the remaining

10For example, the confidence bands for the conditional portfolio weights in the one-factor essentially

affine model are wider than in the three-factor completely affine model in the beginning of the eighties

when yields were high. Results are available on request.

11Specifically, we set λ0 and for the essentially affine models λX equal to their estimated values in all

MCMC draws.
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parameters are determined by both the time series and the cross-section of yields. Table 6

suggests that expected utility losses arising from parameter uncertainty are low for those

parameters that are identified from the cross-section of yields, while they are large for

those parameters that are identified only from the time series of yields.

[Table 6 about here.]

4.4 Utility losses due to parameter uncertainty and model misspecification

So far, we have shown that the three-factor essentially affine model produces investment

strategies that are highly exposed to parameter uncertainty. However, empirical evidence

suggests that the model captures the time-variation in risk premia in bonds while the more

parsimonious models we look at do not (Dai and Singleton (2002) and Duffee (2002)). We

now examine the trade-off between capturing the time-variation in the excess returns of

bonds and minimizing the expected utility loss due to parameter uncertainty. We assume

that the three-factor essentially affine model is the data-generating model and calculate

expected utility losses in each of our four models. For the three-factor essentially affine

model, expected utility losses are solely due to parameter uncertainty and identical to

the losses calculated in the previous section. For our three other models, expected utility

losses are due to both parameter uncertainty and model misspecification.

Table 7 shows the expected utility losses when we assume that the three-factor essen-

tially affine model is the data-generating model. The losses for the three-factor essentially

affine model is the same as those in Table 5 since there is no model misspecification in

this case. The three other models are misspecified and we see that expected utility losses

increase strongly. For the one-factor essentially affine model the expected utility losses

go up by a factor 3-6 while in the completely affine models they go up by a factor 10-40.

This is consistent with the finding of Sangvinatsos and Wachter (2005) that there are

large utility gains from using a three-factor essentially affine model relative to a simpler

model. However, the table also shows that for an investor with a relative risk aversion

of γ = 5 and investment horizon of T = 5 years, the expected utility loss is 66% in the

three-factor essentially affine model while it is only 54% in the one-factor completely affine

model although there is model misspecification on top of parameter uncertainty. Hence,

the suboptimal investment strategy based on the one-factor model with constant risk pre-
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mia in fact carries a 18% smaller utility loss compared to the investment strategy based

on the true model. Even though the three-factor model captures time-variation in bond

excess returns, the parameter uncertainty is so large that an investor would prefer to base

his decisions on the one-factor model. As the table shows, this result holds even more

strongly for higher relative risk aversions.

[Table 7 about here.]

Figure 3 shows the distribution of the utility losses in the four models when there is

both parameter uncertainty and model misspecification. We see that there is a significant

probability of seeing small losses in three-factor essentially affine model. For example, the

probability of utility losses smaller than 20% is 15% in the three-factor essentially affine

model while it is small in the other three models.12 So there is a significant probability of

doing well in three-factor essentially affine model relative to the other models. However,

there is also a large probability mass for utility losses close to 100%. The probability of a

utility loss of 95% or higher is 47% in the three-factor essentially affine model while it is

around 3% in the other three models. Overall, there is a significant risk of doing poorly

because of parameter uncertainty in the three-factor essentially affine model and this risk

outweighs the chance of doing better compared to a simple model.

[Figure 3 about here.]

The expected utility losses reported so far have been computed assuming that the

economy is in steady state. To study the time variation in expected utilty losses due

to parameter uncertainty and model misspecification, Figure 4 displays the time-series

of expected utility losses for the three-factor essentially affine model and the one-factor

completely affine model assuming an investment horizon of 5 years and a relative risk

aversion of γ = 5. As we discussed previously, the latent state vector X can be rotated

into the observable short rate, slope, and curvature of the yield curve (in the one-factor

models the rotation is into the short rate). At each day during the sample, we use the X

implied by the current yield curve to calculate expected utility losses. The parsimonious

one-factor model consistently outperforms the complex three-factor model except for two

12Based on the 1,000 MCMC draws, the probability is 0 in the one-factor models, 0.1% in the three-factor

completely affine model, and 14.7% in the three-factor essentially affine model.
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episodes in the early 1990s and 2000s. During those two periods, Figure 1 shows that the

term structure was steeply upward-sloping and it is well known from Campbell and Shiller

(1991) and others that expected excess bond returns are high in such states. Only an

investor basing his portfolio choice on the three-factor essentially affine model can exploit

the high bond risk premia during these episodes.13 During the first part of the 1980’s the

yield curve was inversed, so the slope was unusually low. This is exploitable in the three-

factor model and therefore we also see higher expected utility losses in the one-factor model

in this case. However, yields were high during this period, magnifying expected excess

returns and the importance of parameter uncertainty and therefore the expected utility

losses also increase in the three factor model. In this case, expected excess returns are

high but increased parameter uncertainty accompany them and investors prefer to stick

to the simple model.

[Figure 4 about here.]

5 Conclusion

The sizeable recent literature on optimal investment strategies in various dynamic set-

tings makes the courageous assumption that the true model and its parameters are known

with certainty. There is no consensus about how to incorporate model and parameter

uncertainty into the decision problem, and the proposed methods for doing so seem very

difficult to implement in realistic, dynamic settings and might also be difficult to commu-

nicate to real-life investors. Alternatively, investors can look for investment strategies that

are less sensitive to model and parameter uncertainty. Our approach allows the investor

to quantitatively compare different models and weigh the cost of parameter uncertainty

against the benefit of capturing return predictability.

Our examination of the US Treasury bond market suggests that most investors are

better off estimating a relatively simple model and implementing the investment strategy

derived from this model instead of estimating a more realistic and complex model and fol-

13In principle, the one-factor essentially affine model also exhibits time-varying bond risk premia. How-

ever, in this model the single state variable is highly correlated with the level of interest rates, which is much

less informative about bond risk premia than the slope of the term structure. In fact, the expected utility

loss for the one-factor essentially affine model is highly correlated with that of the one-factor completely

affine model and, for that reason, is not displayed in Figure 4.
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lowing the corresponding investment strategy. This is because the complex model involves

a high degree of parameter uncertainty.

Our analysis focuses on models for interest rates and bond prices, but our approach

can be used in other markets. For example, papers that emphasize time-varying equity

risk premia often report large utility gains from following portfolio strategies that take

equity return predictability into account. However the implied portfolio weights are often

extreme and very volatile (see, e.g., Brennan, Schwartz, and Lagnado (1997), Campbell

and Viceira (1999), and Campbell, Chan, and Viceira (2003)), while at the same time

equity return predictability is also associated with a large amount of uncertainty (see,

e.g., Goyal and Welch (2008)). Therefore, it is plausible that our results extend to the

equity market. The extent to which our results hold in other markets is an interesting

topic for future research.
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A Proofs

A.1 Proof of Proposition 1

To solve for the optimal investment strategy we use the Dynamic Programming Approach

suggested by Merton (1969, 1971, 1973). The Hamilton-Jacobi-Bellman (HJB) equation associated

with the dynamic optimization problem is given by

0 = sup
π∈Rd

{
Jt + JW [r − π′B′σXλ]W +

1

2
JWWW

2π′B′σXσ′XBπ

+ J ′Xκ (θ −X) +
1

2
tr (JXX σX σ

′
X)−Wπ′B′σXσ′XJWX

}
,

(17)

with the terminal condition J(W,X, T ) = W 1−γ

1−γ if γ 6= 1 and J(W,X, T ) = lnW if γ = 1. The

subscripts on J denote the partial derivatives.

The first order condition w.r.t. π implies that a candidate for the optimal investment strategy

is given by

π∗(W,X, t) =
JW

JWWW
(σ′XB)

−1
λ+

1

JWWW
(σ′XB)

−1
σ′XJWX . (18)

By substituting the candidate for the optimal investment strategy into the HJB-equation we get

that

0 = Jt + JW
[
r − (π∗)

′ B′σXη
]
W +

1

2
JWWW

2 (π∗)
′ B′σXσ′XBπ∗

+ J ′Xκ (θ −X) +
1

2
tr (JXX σX σ

′
X)−W (π∗)

′ B′σXσ′XJWX .

(19)

An educated guess of the solution is

J(W,X, t) =
1

1− γ

(
WeF1(T−t)+F2(T−t)′X+ 1

2X
′F3(τ)X

)1−γ
. (20)

The terminal condition of the HJB-equation implies that F1(0) = F2(0) = F3(0) = 0. Substituting

the candidate for the optimal investment strategy (18) and the relevant derivatives of our guess into

the HJB-equation, simplifying, and finally matching coefficients on X ′[ · ]X, X ′, and the constant

terms lead to the following system of ODEs:

−dF1(τ)

dτ
= F2(τ)′

[
κθ +

1− γ
γ

σXλ0

]
+

1− γ
2γ

F2(τ)′σXσ
′
XF2(τ)

+
1

4
tr ((F3(τ) + F3(τ)′)σXσ

′
X) +

1

2γ
λ′0λ0 + δ0

(21)

−dF2(τ)

dτ
=

[
1− γ
γ

λ′Xσ
′
X − κ′ +

1− γ
2γ

(F3(τ) + F3(τ)′)σXσ
′
X

]
F2(τ)

+
1

2
(F3(τ) + F3(τ)′)

[
κθ +

1− γ
γ

σXλ0

]
+

1

γ
λ′Xλ0 + δX

(22)

−dF3(τ)

dτ
=

1

γ
λ′XλX +

1− γ
γ

λ′Xσ
′
X (F3(τ) + F3(τ)′)− (F3(τ) + F3(τ)′)κ

+
1− γ

4γ
(F3(τ) + F3(τ)′)σXσ

′
X (F3(τ) + F3(τ)′) .

(23)
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Hence, our guess (20) is the solution to the HJB-equation if F1, F2, and F3 solve the above system

of ODEs. Finally, substituting the relevant derivatives of J into (18) gives the optimal strategy

(11).

A.2 Proof of equation (13)

Assume that model j stated in (1)-(3) with parameter vector Θj is the data-generating model.

The any combination of an initial wealth and an investment strategy π will give rise to a terminal

wealth Wπ
T and the expected utility associated with that is thus given by

Ĵ(W,X, t) =

 EP
t

[
1

1−γ (Wπ
T )

1−γ
]
, γ > 1,

EP
t [ln (Wπ

T )] , γ = 1.

(24)

From Theorem 2 in Larsen and Munk (2012) it follows that the expected utility generated by the

investment strategy, π, is given by

Ĵ(W,X, t) =


1

1−γ
(
W eC(X,T−t))1−γ , γ > 1,

lnW + C(X,T − t), γ = 1,
(25)

where the function C(X, τ) satisfies the PDE

− ∂C

∂τ
+ (κ (θ −X)− (γ − 1)σXσ

′
Pπ(X, t))

′ ∂C

∂X
+

1

2
tr

(
∂2C

∂X2
σXσ

′
X

)
− γ − 1

2

(
∂C

∂X

)′
σXσ

′
X

∂C

∂X
+ r(X) + π(X, t)′σP

[
λ(X)− γ

2
σ′Pπ(X, t)

]
= 0

(26)

with the terminal condition C(X, 0) = 0. σP = B′σX denotes the n × m volatility-matrix of

the traded zero-coupon bonds. The suboptimal investment strategies we will consider can all be

written of the form

π(X, t) =
1

γ

(
−σ̂′X B̂

)−1 (
λ̂0 + λ̂XX

)
+
γ − 1

γ

(
σ̂′X B̂

)−1

σ̂′X

(
F̂2(T − t) +

1

2

(
F̂3(T − t) + F̂3(T − t)′

)
X

)
.

(27)

where the hats ( )̂ indicate terms that depend on the assumed parameter values. To follow notation

that is the investment strategy in (27) is based on model i with parameter vector Θ̂i. For the specific

suboptimal investment strategy stated above an educated guess on a solution to the PDE is given

by14

Ĉ(X, τ) = Ĉ1(τ) + Ĉ2(τ)′X +
1

2
X ′Ĉ3(τ)X.

Substituting in the relevant derivatives, the relevant investment strategy in (27), simplifying, and

finally matching coefficients on X ′[·]X, X ′, and the constant terms leads to the following system

14For the completely affine models the matrix function C3(·) as well as F̂3(·) is put equal to zero.
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of ODEs differential equations:

−dĈ1(τ)

dτ
= Ĉ2(τ)′

[
κθ +

γ − 1

γ
σXσ

′
P

(
σ̂′X B̂

)−1 ˆ̂
λ0

]
− γ − 1

2
Ĉ2(τ)′σXσ

′
XĈ2(τ)

+
γ − 1

γ
ˆ̂
F2(τ)′σ̂X

(
B̂′σ̂X

)−1

σP

[
λ0 + σ′P

(
σ̂′X B̂

)−1 ˆ̂
λ0 − (γ − 1)σ′XĈ2(τ)

]
− (γ − 1)2

2γ
ˆ̂
F2(τ)′σ̂X

(
B̂′σ̂X

)−1

σPσ
′
P

(
σ̂′X B̂

)−1

σ̂′X
ˆ̂
F2(τ) (28)

+
1

4
tr
((
Ĉ3(τ) + Ĉ3(τ)′

)
σXσ

′
X

)
− 1

γ
ˆ̂
λ′0

(
B̂′σ̂X

)−1

σPλ0

− 1

2γ
ˆ̂
λ′0

(
B̂′σ̂X

)−1

σPσ
′
P

(
σ̂′X B̂

)−1 ˆ̂
λ0 + δ0

−dĈ2(τ)

dτ
=

[
γ − 1

γ
ˆ̂
λ′X

(
B̂′σ̂X

)−1

σPσ
′
X − κ′ −

γ − 1

2

(
Ĉ3(τ) + Ĉ3(τ)′

)
σXσ

′
X

]
Ĉ2(τ)

+
1

2

(
Ĉ3(τ) + Ĉ3(τ)′

)[
κθ +

γ − 1

γ
σXσ

′
P

(
σ̂′X B̂

)−1 (ˆ̂
λ0 − (γ − 1) σ̂′X

ˆ̂
F2(τ)

)]
+
γ − 1

γ

[
λ′Xσ

′
P

(
σ̂′X B̂

)−1

σ̂′X +
ˆ̂
λ′X

(
B̂′σ̂X

)−1

σPσ
′
P

(
σ̂′X B̂

)−1

σ̂′X

]
ˆ̂
F2(τ)

+
γ − 1

2γ

(
ˆ̂
F3(τ) +

ˆ̂
F3(τ)′

)
σ̂X

(
B̂′σ̂X

)−1

σP

[
λ0 + σ′P

(
σ̂′X B̂

)−1 ˆ̂
λ0

]
(29)

− (γ − 1)
2

2γ

(
ˆ̂
F3(τ) +

ˆ̂
F3(τ)′

)
σ̂X

(
B̂′σ̂X

)−1

σP

[
σ′P

(
σ̂′X B̂

)−1

σ̂′X
ˆ̂
F2(τ) + σ′XĈ2(τ)

]
− 1

γ
λ′Xσ

′
P

(
σ̂′X B̂

)−1 ˆ̂
λ0 −

1

γ
ˆ̂
λ′X

(
B̂′σ̂X

)−1

σPλ0

− 1

γ
ˆ̂
λ′X

(
B̂′σ̂X

)−1

σPσ
′
P

(
σ̂′X B̂

)−1 ˆ̂
λ0 + δX

−dĈ3(τ)

dτ
= − 1

γ
ˆ̂
λ′X

(
B̂′σ̂X

)−1

σP

(
2λX + σ′P

(
σ̂′X B̂

)−1 ˆ̂
λX

)
+
γ − 1

γ
λ′Xσ

′
P

(
σ̂′X B̂

)−1

σ̂X

(
ˆ̂
F3(τ) +

ˆ̂
F3(τ)′

)
+
γ − 1

γ
ˆ̂
λ′X

(
B̂′σ̂X

)−1

σPσ
′
X

(
Ĉ3(τ) + Ĉ3(τ)′

)
+
γ − 1

γ
ˆ̂
λ′X

(
B̂′σ̂X

)−1

σPσ
′
P

(
σ̂′X B̂

)−1

σ̂′X

(
ˆ̂
F3(τ) +

ˆ̂
F3(τ)′

)
(30)

−
(
Ĉ3(τ) + Ĉ3(τ)′

)
κ− γ − 1

4

(
Ĉ3(τ) + Ĉ3(τ)′

)
σXσ

′
X

(
Ĉ3(τ) + Ĉ3(τ)′

)
− (γ − 1)

2

4γ

(
ˆ̂
F3(τ) +

ˆ̂
F3(τ)′

)
σ̂X

(
B̂′σ̂X

)−1

σPσ
′
P

(
σ̂′X B̂

)−1

σ̂′X

(
ˆ̂
F3(τ) +

ˆ̂
F3(τ)′

)
− (γ − 1)

2

2γ

(
ˆ̂
F3(τ) +

ˆ̂
F3(τ)′

)
σ̂X

(
B̂′σ̂X

)−1

σPσ
′
X

(
Ĉ3(τ) + Ĉ3(τ)′

)
.

with boundary condition Ĉ1(0) = Ĉ2(0) = Ĉ3(0) = 0. The hats ( )̂ on the parameters imply that

the benchmark parameter estimates for the models should be used. In the case where there is

only uncertainty regarding the parameter vector Θ and not the data-generating process, i.e.m̃odels

i and j are the same, we have that
ˆ̂
λX = λ̂X ,

ˆ̂
λ0 = λ̂0,

ˆ̂
F2(·) = F̂2(·), and

ˆ̂
F3(·) = F̂3(·), that
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is use the benchmark estimates for the three investment strategies. This is also the case if the

data-generating process equals the three-factor essentially affine model, whereas the investor bases

his investment strategy on one of the two completely affine models. However, if the investor bases

his investment strategy on the one-factor essentially affine model

ˆ̂
λX =

λ̂X

δ̂X
δ′X ,

ˆ̂
λ0 = λ̂0 −

λ̂X

δ̂X

(
δ̂0 − δ0

)
,

ˆ̂
F3(τ) =

F̂3(τ)

δ̂X
δ′X ,

ˆ̂
F2(τ) = F̂2(τ)− F̂3(τ)

δ̂X

(
δ̂0 − δ0

)
.

Note, the functions F̂2(τ) and F̂3(τ) solve the system of ODEs (22)–(23) from the optimal setup

with the benchmark parameter estimates for each of the four models. Hence, our guess is the

solution to the PDE (26) if Ĉ1, Ĉ2, and Ĉ3 solve the above system of ODEs.15

B Details of the MCMC estimation

First the conditionals mentioned in the text are derived, and thereafter practical issues regard-

ing the MCMC sampler are discussed.

B.1 Conditional Distributions

B.1.1 The Conditionals p(X|Θ) and p(Y |Θ, X)

The conditional p(X|Θ) is used in several steps of the MCMC procedure and is calculated as

p(X|Θ) =

(
T∏
t=1

p(Xt|Xt−1,Θ)

)
p(X0).

The continuous-time specification in (4) is approximated using an Euler scheme16

Xt+1 = Xt + µP
Xt∆t +

√
∆t ξt+1,

where ξt+1 ∼ N(0, IN ), ∆t is the time between two observations, and µP
Xt is the drift under P.

Therefore

p(X|Θ) ∝ exp

{
− 1

2∆t

T∑
t=1

3∑
i=1

[
Xt −Xt−1 − µP

Xt−1∆t

]2
i

}
p(X0).

15Note for the completely affine models we have that F3(·) = Ĉ3(·) = 0 and hence the system of ODEs

can be simplified significantly.

16The Euler scheme introduces some discretization error which may induce bias in the parameter es-

timates. This possible bias can be reduced using Tanner and Wong (1987)’s data augmentation scheme.

However, the discretization bias is likely to be small for daily data.
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If the difference between the actual yields and the model-implied yields at time t is denoted by

êt = Yt − (A(Θ) +B(Θ)Xt), the density p(y|Θ, X) can be written as

p(Y |Θ, X) ∝
k∏
i=1

(
D
−T2
ii exp

{
− 1

2Dii

T∑
t=1

ê2
t,i

})
∝ ϕ−kT exp

{
− 1

2ϕ2

T∑
t=1

ê′têt

}
.

B.1.2 The Hybrid MCMC algorithm

According to Bayes’ theorem the conditional of the risk premium parameters is given as

p(λ0, λX |Θ\λ0,λX , X, Y ) ∝ p(Y |Θ, X) p(λ0, λX |Θ\λ0,λX , X)

∝ p(X|Θ) p(λ0, λX |Θ\λ0,λX ),

where Θ\λ0,λX denotes the parameter vector without the parameters λ0 and λX . We assume that

the priors are a priori independent and in order to let the data dominate the results a standard

diffuse, noninformative prior is adopted so p(λ0, λX |Θ\λ0,λX , X, Y ) ∝ p(X|Θ) and λ0, λX can be

Gibbs sampled one column at a time from a multivariate normal distribution. The conditionals of

the other model parameters are given as

p(Θj |Θ\Θj , X, Y ) ∝ p(Y |Θ, X) p(Θj |Θ\Θj , X) ∝ p(Y |Θ, X) p(X|Θ). (31)

Equation (31) implies that the conditional of the variance of the measurement errors is given

as

p(D|Θ\D, X, Y ) ∝ p(Y |Θ, X) p(D|Θ\D).

The parameter ϕ2 can therefore be Gibbs sampled from the inverse Wishart distribution, ϕ2 ∼

IW (
∑T
t=1 ê

′
têt, kT ).

To sample κ̃, δ0, and δX we use the Random Walk Metropolis-Hastings algorithm (RW-MH).

Equation (31) gives the general expression for the conditional distribution.

The latent processes are sampled by sampling Xt, t = 0, ..., T one at a time using the RW-MH

procedure. For t = 1, ..., T − 1 the conditional of Xt is given as

p(Xt|X\t,Θ, Y ) ∝ p(Xt|Xt−1, Xt+1,Θ, Yt)

∝ p(Yt|Xt,Θ) p(Xt|Xt−1, Xt+1,Θ)

∝ p(Yt|Xt,Θ) p(Xt|Xt−1,Θ) p(Xt+1|Xt,Θ).

For t = 0 the conditional is

p(X0|X1,Θ, Y ) ∝ p(X1|X0,Θ, Y ) p(X0) ∝ p(X1|X0,Θ) p(X0),
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while for t = T the conditional is

p(XT |X\XT ,Θ, Y ) ∝ p(XT |XT−1,Θ, Y )

∝ p(YT |XT , XT−1,Θ, Y\YT ) p(XT |XT−1,Θ, Y\YT )

∝ p(YT |XT ,Θ) p(XT |XT−1,Θ).

The efficiency of the RW-MH algorithm depends crucially on the variance of the proposal

normal distribution. If the variance is too low, the Markov chain will accept nearly every draw and

converge very slowly, while it will reject a too high portion of the draws if the variance is too high.

We therefore do an algorithm calibration and adjust the variance in the first eight million draws

in the MCMC algorithm. Within each parameter block the variance of the individual parameters

is the same, while across parameter blocks the variance may be different. Roberts et al. (1997)

recommend acceptance rates close to 1
4 for models of high dimension and therefore the standard

deviation during the algorithm calibration is chosen as follows: Every 100’th draw the acceptance

ratio of the parameters in a block is evaluated. If it is less than 5 % the standard deviation is

doubled, while if it is more than 40 % it is cut in half. This step is prior to the burn-in period since

the convergence results of RW-MH only apply if the variance is constant (otherwise the Markov

property of the chain is lost). In estimating each model we use an algorithm calibration period of

3 million draws, where the variances of the normal proposal distributions are set, a burn-in period

of 5 million draws, and an estimation period of 5 million draws. We keep every 5,000’th draw in

the estimation period, which leaves 1,000 draws. For each parameter, we report point estimates

along with univariate confidence bands based on the 2.5% and the 97.5% percentiles of the MCMC

draws of the posterior distribution. As in Collin-Dufresne, Goldstein, and Jones (2008) we find

point estimates as follows. Let φi denote the ith parameter draw and φ̃i denote the same vector

normalized by the posterior standard deviations. The point estimate is the draw i minimizing:∑
j

∣∣∣φ̃j − φ̃i∣∣∣ .
This version of the multivariate posterior median ensures that parameter restrictions are satisfied

for our parameter estimates, which might not be the case if the point estimates are based on

univariate medians.

All random numbers in the estimation are draws from Matlab 7.0’s generator which is based

on Marsaglia and Zaman (1991)’s algorithm. The generator has a period of almost 21430 and

therefore the number of random draws in the estimation is not anywhere near the period of the

random number generator.
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Figure 1: Time-series of 1-, 5-, and 10-year zero-coupon Treasury yields. The
MCMC estimation is based on a panel data set of daily 1-, 2-, 3-, 5-, 7-, and 10-year
zero-coupon Treasury yields from August 16, 1971 to August 21, 2006. The figure shows
the time series of the 1-, 5-, and 10-year yield.
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Figure 2: Density of utility losses under parameter uncertainty. For each of the
four models in the figure it is assumed that the model is the data-generating model. The
investor chooses a portfolio strategy implied by his model parameter estimates and if these
are not correct he has a utility loss defined as the fraction of wealth he is willing to give up
to know the ”true” parameters. An MCMC estimation using Treasury yield data for the
period 1970-2006 gives a posterior distribution of the ”true” parameters. The posterior
distribution gives a distribution utility losses and the figure shows the distribution of these
losses. The investor’s relative risk aversion is γ = 5 while the investment horizon is T = 5.
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Figure 3: Density of utility losses under parameter uncertainty and model mis-
specification. It is assumed that the three-factor essentially affine model is the data-
generating model.. The investor chooses a portfolio strategy implied by his model param-
eter estimates and if these are not correct he has a utility loss defined as the fraction of
wealth he is willing to give up to know the ”true” model and parameters. An MCMC
estimation using Treasury yield data for the period 1970-2006 gives a posterior distribu-
tion of the ”true” parameters of the three-factor essentially affine model. The posterior
distribution gives a distribution utility losses and the figure shows the distribution of these
losses. The investor’s relative risk aversion is γ = 5 while the investment horizon is T = 5.

34



Jan70 Jan80 Jan90 Jan00 Jan10
0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

 

 
Three−factor essentially affine model
One−factor completely affine model

Figure 4: Conditional expected utility losses over time when the three-factor
essentially affine model is the data-generating model. The figure shows daily con-
ditional expected utility losses from August 16, 1971 to August 21, 2006 for an investor
basing his investment on the three-factor essentially affine model and the one-factor com-
pletely affine model, respectively. The expected utility losses are conditional on the yield
curve. The expected utility losses in the three-factor essentially affine model are due to
parameter uncertainty, while in the one-factor completely affine model they are due to pa-
rameter uncertainty and model misspecification. The investor has an investment horizon
of T = 5 years and a relative risk aversion of γ = 5.
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δ0 0.1589

(0.1582; 0.1629)

i = 1 i = 2 i = 3

δXi 0.0027 0.0101 0.0101

(0.0023; 0.0031) (0.0099; 0.0106) (0.0100; 0.0103)

κ1i 1.5482 0.1433 0.0271

(0.7776; 1.9290) (−0.1706; 0.3661) (−0.0760; 0.1824)

κ2i 1.5041 0.4016 0.0709

(0.5681; 1.7210) (0.2052; 0.7384) (−0.0693; 0.1990)

κ3i 0.6401 −0.0272 0.1171

(0.0553; 1.2182) (−0.3259; 0.2367) (0.0200; 0.2727)

λ0i 0.1644 −0.4501 −1.081

(−1.6999; 0.7431) (−2.0522; 0.4381) (−2.4085;−0.1181)

λX1i −1.1519 −0.1433 −0.0271

(−1.5380; 0.3850) (−0.3670; 0.1702) (−0.1829; 0.0760)

λX2i −0.3433 0.4220 −0.0709

(−0.5785; 0.5767) (0.0853; 0.6191) (−0.1995; 0.0692)

λX3i −0.1961 0.4645 −0.0979

(−0.7848; 0.3685) (0.1990; 0.7546) (−0.2558;−0.0011)

Table 1: Parameter estimates for the three-factor essentially affine model. The
model is estimated using MCMC based on a panel data set of daily zero-coupon Treasury
yields from 1971 to 2006. 95%-confidence intervals are given in parentheses.
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δ0 0.1826

(0.1809; 0.1838)

i = 1 i = 2 i = 3

δXi 0.0027 0.0101 0.0104

(0.0023; 0.0031) (0.0098; 0.0104) (0.0101; 0.0105)

κ1i 0.3984 0 0

(0.3925; 0.4055) − −
κ2i 1.1272 0.8179 0

(1.0928; 1.1620) (0.8005; 0.8252) −
κ3i 0.4348 0.4367 0.0156

(0.4259; 0.4695) (0.4250; 0.4562) (0.0153; 0.0158)

λi −0.0711 −0.4697 −0.4490

(−0.2974; 0.3602) (−0.7459;−0.1164) (−0.8023;−0.1372)

Table 2: Parameter estimates for the three-factor completely affine model. The
model is estimated using MCMC based on a panel data set of daily zero-coupon Treasury
yields from 1971 to 2006. 95%-confidence intervals are given in parentheses.
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Essentially affine model Completely affine model

δ0 −0.3869 −0.2011

(−0.3904;−0.3846) (−0.2026;−0.1999)

δX 0.0128 0.0055

(0.0127; 0.0128) (0.0054; 0.0055)

κ 0.1089 2.72e− 07

(0.0089; 0.2573) (1.13e− 08; 1.63e− 06)

λ0 3.9370 −0.0507

(−0.3345; 9.1777) (−0.3664; 0.2729)

λX −0.1150

(−0.2643;−0.0158)

Table 3: Parameter estimates for the essentially affine and completely affine
one-factor models. The models are estimated using MCMC based on a panel data set
of daily zero-coupon Treasury yields from 1971 to 2006. 95%-confidence intervals are given
in parentheses.
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Inv. horizon πB1 πB5 πB10 πrf

Panel A: Three-factor essentially affine model

0 16.54 −2.34 0.37 −13.58

(−40.16; 72.26) (−8.03; 6.48) (−1.74; 1.72) (−63.53; 35.56)

5 12.92 −4.25 2.67 −10.34

(−35.00; 64.70) (−25.12; 14.05) (−5.09; 10.74) (−52.75, 25.15)

10 13.00 −5.18 3.78 −10.61

(−35.37; 64.78) (−25.94; 14.05) (−5.27; 11.77) (−53.01; 25.02)

Panel B: Three-factor completely affine model

0 18.01 −3.52 0.83 −14.33

(5.56; 25.68) (−6.91; 2.76) (−1.82; 2.48) (−21.01;−5.24)

5 18.01 −2.72 0.83 −15.13

(5.56; 25.68) (−6.11; 3.56) (−1.82; 2.48) (−21.81;−6.04)

10 18.01 −3.52 1.63 −15.13

(5.56; 25.68) (−6.91; 2.76) (−1.02; 3.28) (−21.81;−6.04)

Panel C: One-factor models

Essentially affine Completely affine

Inv. horizon πB5 πrf πB5 πrf

0 0.28 0.72 0.37 0.63

(−0.76; 2.03) (−0.68; 1.36) (−2.01; 2.66) (−1.69; 3.00)

5 0.21 0.79 1.17 −0.17

(−1.02; 1.90) (−0.94; 2.01) (−1.21; 3.46) (−2.49; 2.20)

10 0.15 0.85 1.97 −0.97

(−1.17; 1.84) (−0.85; 2.17) (−0.41; 4.26) (−3.29; 1.40)

Table 4: Portfolio weights for completely and essentially affine one- and three-
factor models for an investor with a risk aversion of γ = 5. Panel A shows the
optimal portfolios for different horizons for an investor who bases his investment strategy
on a three-factor essentially affine model. Panel B and C shows the optimal portfolios for
the three-factor completely affine model and the two one-factor models. In the one-factor
models the investor invests only in the 5-year bond and the risk-free asset. The economy
is assumed to be in steady state. An investment horizon of 0 corresponds to a myopic
investment strategy and the portfolio weights are in natural units, not in percent. The
estimates are based on an MCMC estimation using Treasury yield data for the period
1970-2006 and 95%-confidence intervals are given in parentheses.
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Model T = 1 T = 5 T = 10

Panel A: γ = 2

3-factor ess. 17.24% 59.28% 82.09%

3-factor com. 2.39% 11.07% 20.22%

1-factor ess. 4.59% 15.27% 27.93%

1-factor com. 0.71% 3.43% 6.54%

Panel B: γ = 5

3-factor ess. 11.36% 66.09% 87.00%

3-factor com. 0.97% 4.69% 9.03%

1-factor ess. 2.92% 11.31% 27.72%

1-factor com. 0.29% 1.41% 2.77%

Panel C: γ = 10

3-factor ess. 8.12% 70.09% 88.69%

3-factor com. 0.49% 2.39% 4.69%

1-factor ess. 2.11% 8.62% 26.82%

1-factor com. 0.14% 0.71% 1.41%

Table 5: Expected utility loss due to parameter uncertainty. For each of the
four models in the table it is assumed that the model is the data-generating model and
expected utility losses reflect the fraction of wealth an investor is willing to give up to avoid
parameter uncertainty. Expected utility losses are calculated as explained in Section 4.3
and based on an MCMC estimation using Treasury yield data for the period 1970-2006.
γ denotes the relative risk aversion of the investor while T is the investor’s investment
horizon in years.
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Model T = 1 T = 5 T = 10

Panel A: γ = 2

3-factor ess. 0.01% 0.05% 0.10%

3-factor com. 3.7× 10−3 % 0.02% 0.04%

1-factor ess. 1.4× 10−5 % 1.2× 10−4 % 3.4× 10−4 %

1-factor com. 1.6× 10−7 % 8.1× 10−7 % 1.6× 10−6 %

Panel B: γ = 5

3-factor ess. 3.2× 10−1 % 0.03% 0.07%

3-factor com. 1.5× 10−3 % 7.4× 10−3 % 0.01%

1-factor ess. 6.0× 10−6 % 6.4× 10−5 % 2.3× 10−4 %

1-factor com. 6.4× 10−8 % 3.2× 10−7 % 6.4× 10−7 %

Panel C: γ = 10

3-factor ess. 1.7× 10−3% 0.02% 0.05%

3-factor com. 7.4× 10−4 % 3.7× 10−3 % 7.4× 10−3 %

1-factor ess. 3.1× 10−6 % 3.6× 10−5 % 1.4× 10−4 %

1-factor com. 3.2× 10−8 % 1.6× 10−7 % 3.2× 10−7 %

Table 6: Expected utility loss when market prices of risk parameters are known.
For each of the four models in the table it is assumed that the model is the data-generating
model and that the market prices of risk parameters λ0 and λX are known. Expected utility
losses are calculated as explained in Section 4.3 and based on an MCMC estimation using
Treasury yield data for the period 1970–2006. γ denotes the relative risk aversion of the
investor, whereas T is the investor’s investment horizon in years.
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Model T = 1 T = 5 T = 10

Panel A: γ = 2

3-factor ess. 17.24% 59.28% 82.09%

3-factor com. 22.24% 81.67% 97.05%

1-factor ess. 26.25% 80.68% 96.21%

1-factor com. 25.24% 79.11% 95.44%

Panel B: γ = 5

3-factor ess. 11.36% 66.09% 87.00%

3-factor com. 11.77% 62.16% 88.95%

1-factor ess. 13.56% 57.16% 83.52%

1-factor com. 12.96% 54.16% 79.38%

Panel C: γ = 10

3-factor ess. 8.12% 70.09% 88.69%

3-factor com. 7.12% 44.22% 75.24%

1-factor ess. 8.20% 41.47% 71.42%

1-factor com. 7.78% 36.90% 61.26%

Table 7: Expected utility loss due to parameter uncertainty and model misspeci-
fication. It is assumed that the three-factor essentially affine model is the data-generating
model. Expected utility losses reflect the fraction of wealth an investor is willing to give
up to avoid parameter uncertainty and model misspecification. For the three-factor essen-
tially affine model losses are only due to parameter uncertainty. Expected utility losses are
calculated as explained in Section 4.3 and based on an MCMC estimation using Treasury
yield data for the period 1970-2006. γ denotes the relative risk aversion of the investor
while T is the investor’s investment horizon in years.
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