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1. Introduction

In most structural models of credit risk, there is no significant role for the dynamics of a firm’s

capital structure. Thus, almost none of the extensive theoretical and empirical literature on

the dynamics of corporate capital structure has found its way into the literature on pricing

corporate debt. Indeed, most structural models of credit risk assume that the amount of

debt is constant, either explicitly, or implicitly through the assumption of a constant default

boundary.1 Default in structural models occurs when the value of a firm’s assets breaches

the default boundary and so default probabilities and bond prices depend on the dynamics

of both a firm’s asset value and the default boundary. Excluding the dynamics of the default

boundary therefore misses one of the two key components of the dynamics of credit risk.

Although most models assume that the amount of debt is constant, there are a few

exceptions. For example, the Black and Cox (1976) model allows the amount of debt to grow

at a deterministic rate but this implies that changes in the amount of debt are perfectly

predictable. Thus, the model proposed by Collin-Dufresne and Goldstein (2001) (CDG)

represents a major step forward because it includes dynamic adjustment of leverage. As

CDG point out, firms’ adjustment of their leverage is not only a prediction of many models

of optimal capital structure (e.g., Fischer, Heinkel, and Zechner (1989)) but an evident

empirical fact. In CDG’s model, a firm adjusts the volume of its debt towards a target

leverage ratio, so that leverage is mean reverting.

The CDG model thus deals with one major deficiency of structural models but there

remains a second. Default occurs when Vt ≤ dKt where Vt is the market value of the firm’s

assets, Kt is the face value of debt and d is the default boundary, implying that default

occurs when

lt = kt − vt ≥ − log(d) (1)

where lt is log-leverage and, thus, the probability of default depends on the evolution

of the distribution of leverage. In structural models with either constant debt or time-

1Examples where the amount of debt is constant include Merton (1974), Longstaff and Schwartz (1995),
Leland (1998), Chen, Cui, He, and Milbradt (2018), Feldhütter and Schaefer (2018), Du, Elkamhi, and
Ericsson (2019), Bai, Goldstein, and Yang (2020), and Huang, Nozawa, and Shi (2020).
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varying but deterministic debt as in the Black-Cox model, the volatility of log-leverage,

both instantaneously and at any future date, is simply equal to the volatility of assets. In

the CDG model, firms issue or retire debt to adjust their leverage towards their target, but

because debt issuance in the model is locally deterministic, shocks to leverage come only

from the shocks to asset value. This implies that instantaneously, leverage volatility in the

CDG model is also equal to asset volatility while for longer horizons, due to mean reversion

in leverage, it is lower than asset volatility. Later structural models of credit risk build on the

insight of CDG and add realistic features such as debt adjustment costs and macro-economic

uncertainty (Hackbarth, Miao, and Morellec (2006), Bhamra, Kuehn, and Strebulaev (2010),

Chen (2010), and others), but share the same basic mechanism that, given the state of the

economy, shocks to leverage come only from shocks to asset value.

We carry out an empirical analysis of the dynamics of debt in the light of two fundamental

theories of leverage, the trade-off theory and the pecking order theory of Myers and Majluf

(1984). To shed new light on their relative importance for structural models of credit risk,

we follow Welch (2004) and investigate the response of the level of debt to future equity

returns. The trade-off theory predicts high (low) debt growth in response to high (low)

equity returns, while the pecking order theory predicts the opposite. Specifically, we group

firms with similar leverage and, within each group, classify them as either ‘high-’ or ‘low

equity return’ depending on whether their future equity returns are above or below the

median. We find that, over the period on which equity returns are conditioned, firms with

low equity returns take on more debt than firms with high equity returns. This short-run

pattern is consistent with the pecking order theory. In contrast, in the years following the

period on which equity returns are conditioned, high return firms increase debt more than

low return firms and end up with more debt. This long-run pattern is consistent with a

target leverage ratio. Both patterns are robust across time periods, when controlling for

differences in firm size, leverage, cash holdings and survivorship bias.

While the long-run response of debt to equity returns is consistent with the predictions of

the CDG model, the short-run response is not. Importantly, the differences in response for

different horizons shows that shocks to debt issuance are imperfectly correlated with shocks

to asset value. We therefore propose a new structural model that is able to capture both
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the short- and long-run response. Since our focus is on the consequences of the dynamics of

the level of debt, we initially maintain the standard assumptions about both the dynamics

of firm value (Geometric Brownian Motion) and risk premia (a constant Sharpe ratio). In

the model – the ‘stochastic debt’ (SD) model – leverage is mean reverting, as in the CDG

model, but debt issuance is stochastic and locally negatively correlated with changes in the

firm’s asset value. The stochastic component of debt issuance and its negative correlation

with the firm’s asset value have a significant effect on both the level and term structure of

the volatility of leverage and, therefore, on credit spreads.

To see the importance of adding stochastic debt to structural models, Figure 1 plots

the standard deviation of log-leverage (thick black line) and log-firm value (thin red line)

at annual horizons from one to 20 years for a number of cases. Panels A, B and C give

model values with parameters estimated later in the paper while Panel D shows the average

volatility of firm value and leverage computed from individual firms that are present in all

years in our data sample (1988-2017). Panel A shows that for models where the future

amount of debt is deterministic, the volatilities of firm value and leverage are identical at

all horizons. This is the case for the Merton and Black-Cox models as well as newer models

with added realism such as stochastic volatility and jumps investigated later in the paper.2

Panel B shows the corresponding values for the CDG model. Here, as in the Merton and

Black-Cox models, the local volatility of leverage and firm value are equal but mean reversion

in leverage attenuates the volatility of leverage at longer horizons and leverage volatility is

always lower than asset volatility. As described above, the SD model that we propose differs

from existing models in that debt adjustment is stochastic. Panel C shows that, as in the

CDG model, mean reversion in leverage results in the volatility of leverage converging to a

limiting value as the horizon becomes distant. However, the stochastic component in a firm’s

debt adjustment (and its negative correlation with firm value) means that in the short run

the volatility of leverage is higher than the volatility of firm value. Comparing panels A-C

and D, it is clear that the SD model captures the relation between the volatility of leverage

and the volatility of firm value better than existing models.3

2Examples include Cremers, Driessen, and Maenhout (2008), McQuade (2018), Du, Elkamhi, and Ericsson
(2019), and Bai, Goldstein, and Yang (2020).

3Leverage volatility is overstated if leverage changes are predictable. To examine this further, we estimate
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Fig. 1 Leverage and asset volatility. This graph shows volatility of leverage -
√
V ar

(
log(Lt+TLt

)
)

- and

volatility of asset value -
√
V ar

(
log(Vt+TVt )

)
- as a function of the horizon T − t in years. In the Black-Cox

model log-firm value is given as dvt = (µ − δ − σ2

2 )dt + σdWt and the only source of volatility in leverage.
Panel A shows the volatility for different horizons, where we have used average parameters from the empirical
section, σ = 0.24, µ = 0.1028, and δ = 0.05. In the stochastic debt and CDG models, log-debt is given as
dkt = λ(ν − lt)dt+ σkdWk,t, where lt = kt − vt and σk = 0 in the CDG model. The volatilities in the CDG
and stochastic debt models in Panel B and C are based on a simulated time series of 1,000,000 years. The
parameters in the stochastic debt model are set to the empirically estimated values λ = 0.1814, ν = −1.0046,
σk = 0.2706 and ρ = −0.1868 (where ρ is the correlation between Wt and Wk,t), while they are λ = 0.1732
and ν = −1.0007 in the CDG model. Panel D shows empirical volatilities, based on firms that have available
data in all 30 years of the data sample, 1988-2017, and that have a leverage of at least 0.01 in all years (a
total of 238 firms). Leverage is defined as Lt = Dt

Vt
where Dt is the book value of debt and Vt is the market

value of the firm’s assets. As an empirical proxy for the market value of assets, we use the market value of
equity plus the book value of debt.
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Using US corporate bond yield data for the period 1988–2018, we first calibrate the

models to match historical default rates and then investigate their ability to match both

spreads and spread volatility. The pricing is out-of-sample in the sense that we do not use

bond spreads as part of the model calibration. We find that the SD model has the smallest

average pricing errors as a result of its more accurate pricing of short-term bonds. The

reason for the better performance of the SD model is that, compared to the other models

and particularly for short-term bonds, it produces higher spreads for safe firms and lower

spreads for risky firms. This is the case in both the cross-section and the time series: In the

cross-section the SD model predicts higher (lower) spreads for firms with low (high) leverage

and in the time series higher (lower) monthly spreads in calm (volatile) periods.

The distinct predictions of the SD model for short-term bonds is due the model’s higher

leverage volatility for short horizons. The default boundary for the different models is

estimated by calibrating each model to match historical default rates and this means that,

for average levels of leverage, default probabilities – and thus model spreads – are similar

across the models. However, higher leverage volatility in the SD model means that the

estimated default boundary is lower and the sensitivity of spreads to changes in leverage is

lower, and so firms with low (high) leverage have higher (lower) spreads in the SD model

compared to the other models. Consistent with this, we find that the volatility of spreads

in the SD model match actual volatility better. For example, the volatility of changes in

monthly average spreads for bonds with a maturity below three years is 23-24 bps in the

SD model, reasonably close to the actual volatility of 23 bps, while it is 41–62 in the CDG

model.

To shed further light on the importance of stochastic debt, we also incorporate this feature

in the model with stochastic volatility and jumps proposed in Du, Elkamhi, and Ericsson

(2019) and estimate the model parameters for the largest firm in our sample, Walmart, by

the volatility of εi,t in the regression log(Li,t+T ) − log(Li,t) = β′Xi,t + εi,t where Xi,t includes a constant,
market-to-book assets ratio, tangibility, profits, log of assets, leverage, market-wide expected inflation,
Moody’s BBB-AAA spread, the last year’s US equity market return and the last year’s changes in firm
leverage and debt. Adjusting for predictable changes only lowers leverage volatility at 1-year horizon slightly,
from 40.2% to 39.0%, while the reduction in the leverage volatility at long horizons is more sizeable, for
example the volatility at a 20-year horizon is reduced from 93.4% to 69.8%. The result that short horizons
leverage volatility is higher than asset volatility while the reverse is true for long maturities is the same.
Results are available on request.
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fitting the model to the firm’s CDS spread curves. The SD model outperforms the stochastic

volatility-jump (SVJ) model, RMSEs are 9bps vs 14bps. The reason for the better pricing

performance is that the stochastic debt model can match the average concave spread curve

of Walmart while the SVJ model cannot. The SVJ model has the same leverage volatility as

asset volatility as shown in Figure 1 Panel A and, thus, being able to break the one-to-one

link between asset- and leverage-volatility (as shown in Panel C) is important for pricing.

Combining the SVJ and stochastic debt models improves the pricing performance further

with RMSEs down from 9-14bps to 3bps.

We carry out a number of robustness checks. We show that when we use the actual

market value of debt (instead using book value as an empirical proxy) when calculating firm

value, our empirical results are similar. Furthermore, we show that the results are also robust

to using Treasury yields instead of swap rates as the riskfree rate and using CDS premiums

as a measure of credit spreads. In all cases, we find the inclusion of stochastic debt to be

important when pricing corporate credit risk.

We are not aware of any papers that analyse the dynamics of the level of debt and then

use these dynamics to distinguish between different structural models of credit risk. Some

papers test a number of different structural models: for example, Huang and Huang (2012)

(HH) investigate a variety of models, each calibrated so as to match exactly the historical

default rate at each maturity and rating. Recognising that the historical default rate for a

given maturity and rating provides only a very noisy estimate of the expected default rate,

we calibrate to a cross-section of historical default rates. Furthermore, we investigate spread

predictions in the cross-section and in the time series, while HH focus on average spreads.

Eom, Helwege, and Huang (2004) [EHH] test structural models with different dynamics for

the default boundary and report that most of the models overpredict spreads. Rather than

calibrate to historical default rates, they assume that the default point is equal to the face

value of debt. Huang, Shi, and Zhou (2020) use GMM to estimate a range of structural

models (including the CDG model). They pay particular attention to the first and second

moments of CDS spreads and equity returns over a relatively short period (2002-2004), while

we focus on debt dynamics and corporate bond spreads over a longer period (1988-2018).

Bai, Goldstein, and Yang (2020) reject the joint assumption of the firm value following a
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Geometric Brownian Motion and the level of debt being constant. They suggest firm value

dynamics that differ from standard models while, here, we suggest different dynamics for

the firm’s debt. Dorfleitner, Schneider, and Veza (2011) propose a general specification of

the default boundary and calibrate their model to CDS premia of two firms, but do not

conduct a large-scale empirical analysis as we do. Finally, Flannery, Nikolova, and Oztekin

(2012) investigate the empirical relation between future changes in leverage and current

credit spreads, but do not isolate the contribution of the level of debt or incorporate their

findings into a structural model.

2 New facts about the dynamics of debt

The amount of debt that a firm has, and the way this changes over time, plays a key role

in structural models of credit risk as it determines the firm’s default boundary, and so has

a major impact on its default probability and credit spread. Moreover, in pricing bonds

or estimating default probabilities, it is the amount of debt at the time of default which is

critical rather than the amount of debt at the price observation date. Thus, in order to price

bonds or estimate default probabilities, we need to characterise the dynamics of a firm’s

debt level. The empirical evidence on this point is surprisingly limited and in this section

we present new facts.

Our empirical analysis is guided by the main predictions of the two leading theories of

capital structure: the trade-off theory and the pecking order theory of Myers and Majluf

(1984). First, we provide estimates of the growth rate of debt, both the unconditional growth

rate – averaging over all firms – and the growth rate conditioned on current leverage. Since

asset values grow over time, the stationary leverage theory predicts that, on average, the

level of debt should also grow. Furthermore, if firms have a target leverage ratio, there

should be a negative relation between current leverage and future growth of debt. Second,

we follow Welch (2004) and investigate the growth rate of debt conditioned on future equity

returns. The stationary leverage theory predicts that to maintain the same leverage ratio

firms with low equity returns have low debt growth rates. The pecking order theory predicts

a preference for debt rather than equity, as a result of lower information costs for debt, and
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to the extent that firms with low returns have a higher need for outside funds, it predicts a

higher debt growth rate for these firms. Like Welch (2004), we examine firms’ debt choice

over the same horizon as the equity shock but also at shorter and longer horizons.

We first investigate how the average level of debt changes over time. For firm i in year t

we denote the nominal gross amount of debt by Di,t
4. For a future horizon T (measured in

years) we calculate the log-growth in debt for firm i between t and T as:

RT
it = log

(Di,t+T

Di,t

)
(2)

and discard the observation if the amount of debt for firm i at time t + T is not reported.5

We measure the log debt ratio rather than the simple ratio for two reasons. First, log is more

robust to outliers and, second, in all the models that we investigate (except those where the

amount of debt is constant), the dynamics of debt are defined in logs. Our estimate of the

average growth rate for horizon T is

RT =
1

NT

∑
i

∑
t

RT
it (3)

where NT is the total number of observations of RT
it (across firms and time).

Table 1 shows the average log debt ratio in our sample period 1988-2017. On average, the

amount of debt increases substantially. For all firms, the face value of debt after 10 years is

136% higher and the increase is highly statistically significant. This fact may seem obvious

in the sense that, since asset values grow over time, if nominal debt did not also grow at a

similar rate, the average level of corporate leverage would tend to zero. Despite this, a zero

growth rate in nominal debt is the most common assumption in the credit risk literature.

4Details about the data used here and later in the paper are given in Appendix A but the following
provides some key points and definitions. Firm variables are collected in the CRSP/Compustat Merged
Database and computed as in Feldhütter and Schaefer (2018). For a given firm and year the nominal
amount of debt is the debt in current liabilities plus long-term debt. We restrict our analysis to industrial
firms and to be consistent with the corporate bond data set, we restrict the firm data we use to the period
1988-2017. The leverage ratio is calculated as (nominal amount of debt)/(market value of equity + nominal
amount of debt). The number of firm-year observations with both the level of debt and market value of
equity available is 131,971 and the number of firms is 14,503.

5We restrict our analysis to firm-year observations with a positive amount of debt which is the case for
84.0% of the observations.
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As mentioned in the introduction we are interested in when leverage Lt := Kt
Vt

crosses

a threshold where Kt is the book value of debt and Vt is the market value of the firm. As

an empirical proxy for the market value of the firm, we use the book value of debt plus the

market value of equity and our measure of leverage is thus Kt
Et+Kt

where Et is the market

value of equity.

The relation between a firm’s initial leverage and the growth rate of its debt is shown in

Figure 2 (and Table 1). Firms with lower leverage have a higher future growth rate of debt.

For example, over a 10-year horizon firms with a leverage of between zero and 20% increase

their nominal amount of debt by an average of 324%, while for firms with a leverage between

40% and 60% the increase is only 13%. We also see that highly levered firms reduce their

debt. For example, again over a horizon of ten years, firms with a leverage of more than 80%

decrease their nominal debt by an average of 25%.6 Overall, Figure 2 and Table 1 document

both the growth in firm debt over time and a negative relation between current leverage and

the future growth rate of nominal debt.

The growth rates in debt documented so far are consistent with leverage being stationary.

However, when we condition on a shock to asset value, as in Welch (2004), a different pattern

emerges. For each of the leverage groups in Figure 2 and Table 1, we sort firms according to

future equity returns. Specifically, for a given leverage group, we calculate for each firm and

year t, the three-year future equity return between t and t+3 (taking into account dividends

and stock splits), and then sort firms in year t into two groups according to whether their

return is below or above the median. For example, if there were 200 firms in 1995 with a

leverage between 0.4 and 0.6, we calculate their equity returns between 1995 and 1998, and

designate the 100 firms with equity returns above (below) the median return as ‘high’ (‘low’)

equity return. We repeat this for the remaining years in the sample to arrive at our final

sample of high and low equity return firm-years. (Firms may, of course, switch between high

and low return over the years).

Figure 3 shows the average cumulative growth in log-debt over six years: three years

6One may worry about a simple average across time and firms for the following reason. If, in recessions,
firms are more highly leveraged and have lower debt growth rates, the low debt growth rate of highly
leveraged firms may partially be due to the low debt growth rates in recessions. To address this concern we
have also, for each leverage group, calculated the average debt growth rate for each year in the sample and
then calculated the average across years. Results are very similar and available on request.
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either side of the three-year horizon over which equity returns are measured. Beyond the

three-year horizon, the growth in debt for high-return firms is higher than for low return

firms, consistent with firms having a target leverage ratio. But, at the 1- and 2-year horizon,

apart from firms with leverage higher than 80%, the opposite is true and low return firms

issue more debt than high return firms. For example, Table 2 reports that, for firms with an

initial leverage between 20% and 40% that experience a high three-year equity return, the

change in debt level after one year is approximately zero, while firms that experience a low

return increase their debt by 4%. After 10 years, i.e., seven years after the equity shock, the

pattern is reversed: for the same leverage bracket, high return firms increase their debt by

64% and low return firms by only 6%. The table shows that the differences in debt growth

rates are statistically significant except in a few cases. Furthermore, we see that the average

leverage for low and high equity return firms is very similar and so the results are unlikely

to be due to imperfectly controlling for leverage.7

This result is consistent with firms maintaining a stationary leverage ratio in the long

run. However, if firms always adjusted their debt levels towards their target leverage ratio,

we would find that firms with low equity returns would have lower debt growth rates at all

horizons. Thus, while the long-run results in Figure 3 are consistent with firms having a

target leverage ratio, the short-run behaviour is consistent with the pecking order theory,

i.e., firms that suffer a negative value shock rely first on debt financing.

Welch (2004) finds a similar result over a one-year horizon: firms respond to poor

performance with higher debt levels and to good performance with higher equity issuance.

Empirical evidence in Brown, Gustafson, and Ivanov (2020) and Norden and Weber (2010)

provide more detailed evidence on how firms manage their debt. Brown, Gustafson, and

Ivanov (2020) find that a temporary negative shock to cash flows leads firms to draw on

7In some of the cases shown in Figure 3, the value of log future debt shows a ‘kink’ at the three-year
horizon. Kinks are also visible other related figures that we describe below (e.g., Figures 4 and 6). The
reason for the kink is that, when we condition on the 3-year equity return, the expected value of log debt
at a future time t, depends on the correlation between the time-t value of debt and the equity return over 3
years. As t moves through 3 years, the period over which equity return is measured no longer includes all of
the period over which log debt is measured. We show in Appendix B that, under our model, although the
correlation is continuous as t moves through the conditioning horizon, the first derivative of the correlation
is not, i.e., there is a kink (see equations (52) – (54)). When we then compute the conditional expectation
in Equation (54), the kink in correlation carries over to the expected values.
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their credit lines and this applies particularly to high-quality firms. Norden and Weber

(2010) document that, 12 months prior to default, firms experience a decline in their cash

flows and draw heavily on their credit lines and that this is also the case for surprise defaults

in ‘high grade’ firms. Thus, the existing empirical evidence is consistent with our finding

that firms that are subject to a negative shock take on more debt. Further, it appears from

the literature that credit lines are an important channel through which this occurs.

Figure 4 shows the future growth of short- and long-term debt separately. We see that

both types of debt show the same pattern, namely that low equity return firms increase

debt in the short run and decrease debt in the long-run. The pattern is much stronger in

short-term debt than in long-term debt and the figure also shows that low equity return

firms accumulate less cash (and so do not hoard cash when hit by a negative shock) and that

our main result is very similar if we net cash from the firm’s total debt. Finally, Figure 4

shows the future change in leverage. We see that the joint effect of a negative equity shock

and an increase in debt leads to a substantial increase in leverage that reverts back after the

shock only slowly.

In Section 6.3 we show that these results are robust to controlling for firm size, using

a different data period, accounting for survivorship bias, and matching firms exactly on

leverage and cash holdings.

With these stylized facts as yardsticks, we now compare the ability of structural models

of credit risk to match actual debt dynamics. Since, as we have already noted, many models

in the literature assume, counterfactually, that the amount of debt is constant, this is an

area in which structural models could potentially be improved and this is what we turn to

next. Later, in Section 5.3, we discuss and implement a model with stochastc asset volatility

and jumps in asset value.

3 Structural models and their dynamics of debt

In this section we discuss the four structural diffusion models that we implement in the main

analysis: three that are well-known from the literature and a new model that we propose.

We focus on the dynamics of debt in each case since our assumptions on asset value dynamics
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and risk premia are standard (and common across the different models). We then describe

how the model parameters are estimated and compare their debt level dynamics with those

documented in the previous section.

3.1 Structural models

For all four models we assume that the market value of the firm’s assets follows a Geometric

Brownian Motion under the natural measure,

dVt
Vt

= (µ− δ)dt+ σdWt (4)

where δ is the payout rate to debt and equity holders, µ is the expected return on the firm’s

assets and σ is the volatility of returns on the assets.

The firm defaults the first time that the value of the firm hits the default boundary (from

above). We assume that the default boundary is a constant fraction, d, of the face value of

debt at the time of default, Kt, and so τ , the default time is given by:

τ = inf{t|Vt ≤ d×Kt}. (5)

The models we examine differ only in their assumptions about the dynamics of the firm’s

nominal debt, Kt. We denote log-firm value as vt = log(Vt) and log-debt as kt = log(Kt),

and so the default time may also be written as:

τ = inf{t|lt ≥ −log(d)} (6)

where log-leverage is lt = kt − vt. We next describe the evolution of debt in the different

models we implement.

Constant level of debt [BC-0G]

The most common assumption in the literature is that the level of debt remains constant
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(see footnote 1 for examples), i.e.

kt = k0 for all t > 0. (7)

This corresponds to the Black and Cox (1976) model with growth in the default boundary

set to zero; we refer to this model as BC-0G.

Constant growth in debt [BC]

In the Black and Cox (1976) model, the level of debt is Kt = K0e
γt, i.e.

kt = k0 + γt (8)

where γ > 0. In this case, the level of debt increases deterministically over time. Since firms

do, on average, increase their debt over time, it is perhaps surprising that this model is never

used in the literature.8

Deterministic debt adjustment [CDG]

Collin-Dufresne and Goldstein (2001) propose a structural model in which leverage is

stationary and the adjustment to target leverage is locally deterministic. Specifically, the

dynamics of the log-debt level, kt, in the CDG model are given by

dkt = λ(ν − lt)dt (9)

where λ > 0 and lt is log-leverage. If log-leverage is above (below) a target ν, the firm reduces

(increases) its level of debt. In the long run, the expected level of debt is proportional to

firm value. This model has been used in Eom, Helwege, and Huang (2004) and Huang and

Huang (2012), among others.

Stochastic debt adjustment [SD]

8Bao (2009) and Feldhütter and Schaefer (2018) implement a model they refer to as the Black-Cox model,
but in our terminology this is the BC-0G model.
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To accommodate the features of debt dynamics that are documented in Section 2, we

propose a model, where the dynamics of the debt level are given by:

dkt = λ(ν − lt)dt+ σkdWk,t (10)

where the correlation between the shock to debt, Wk, and the shock to firm value, W , is

ρ. Mean reversion, λ(ν − lt)dt, implies that the expected level of debt is proportional to

firm value in the long run, as is the case in the CDG model. However, the presence of

the stochastic component, σkdWk,t, means that, in the short run, leverage deviates from a

deterministic drift towards the firm’s target leverage ratio.

3.2 Estimation of debt dynamics parameters

We estimate the parameters for each model by matching the model-implied debt dynamics

to the historical estimates documented in Section 2. Specifically, we denote by D
g

i,T the

historical average T -year log-growth in debt for firms with an initial leverage in range Li.

We use initial leverage ranges L1 = [0; 0.2], L2 = [0.2; 0.4], L3 = [0.4; 0.6], L4 = [0.6; 0.8],

and L5 = [0.8; 1], for which the historical log-growth rates are given in Table 1. We denote

the historical average T -year log-growth in debt for firms with an initial leverage that is in

leverage group Li, and experiences a three-year equity shock above (below) the median by

D
g,H

i,T (D
g,L

i,T ) and the difference by ∆D
g

i,T = D
g,H

i,T −D
g,L

i,T . These conditional historical growth

rates are given in Table 2.

All four models share the same dynamics for the value of the firm (equation (4)) and we set

the corresponding parameters to average values (estimated later and given in Table 4): Θ̂P
v =

(µ, δ, σ) = (0.0996, 0.044, 0.24).9 The BC-0G model requires no debt-dynamics parameters.

For the other models, the debt dynamics parameters are given as ΘBC = γ,ΘCDG = (λ, ν),

and ΘSD
k = (λ, ν, σk, ρ). We estimate these parameters for each model by minimizing the

weighted squared differences between historical debt growth rates and model-implied debt

growth rates where the weights are given by the precision with which the historical growth

9Specifically, the average riskfree rate is r = 0.04679 and with a Sharpe ratio of θ = 0.22 we have that
µ = r + θσ = 0.04679 + 0.22 ∗ 0.24 = 0.0996.
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rates are estimated:

min
Θk

5∑
i=1

10∑
T=1

([Dg

i,T −D
g
T (Lmi , Θ̂

P
v ,Θk)

SDD
i,T

]2

+
[∆D

g

i,T −∆Dg
T (Lmi , Θ̂

P
v ,Θk)

SD∆D
i,T

]2)
. (11)

Here SDD
i,T are the standard errors given in Table 1, SD∆D

i,T are the standard errors given in

Table 2, Lmi is the mid point of leverage interval Li, D
g
T (Lmi , Θ̂

P
v ,Θk) is the model-implied

growth rate in debt, and ∆Dg
T (Lmi , Θ̂

P
v ,Θk) is the model-implied difference in growth rates

between low and high 3-year equity shock firms. Appendix B provides formulae for the

expected level of debt for each model.10

3.3 Model-implied debt dynamics

For each of the models, Figure 5 shows the expected value of the increase in (log) debt,

over horizons from one to ten years along with the corresponding average values from the

data. The BC-0G model assumes that the level of debt remains constant which is clearly

counterfactual. The growth rate in the BC model is estimated to be γ̂ = 0.0430 and, in this

sense, the model is more reasonable than the BC-0G model because it at least implies an

increase in the level of debt over time. However, the model does not capture cross-sectional

differences in the growth rate of debt. As Figure 5 again shows, there is a large difference

in the average historical growth rate of debt for firms with low and high leverage while the

BC model implies no difference between these two cases. (Table A1 gives the values).

The parameters defining the expected path of log-debt in the CDG model are estimated to

be (λ̂, ν̂) = (0.1732,−1.0007). The half-life of the leverage adjustment is log(2)/0.1732 = 4.0

years, and thus firms slowly adjust their leverage to changes in firm value. The estimate of

ν corresponds to a target leverage ratio of 0.31.11 Figure 5 shows that the CDG and SD

models fit the cross-section of historical average debt growth rates substantially better than

the BC-0G and BC models.

10The model-implied growth rate in debt is 0 in the BC-0G model, γt in the BC model, and given in
equation (42) for the CDG and SD models. The model-implied difference in growth rates between low and
high equity shock firms is 0 in the BC-0G and BC models and given in equation (54) for the CDG and SD
models.

11Equation (39) shows that the log target leverage is l̄ = ν − µ−δ−σ22
λ = −1.0007 − 0.0996−0.044− 0.242

2

0.1732 =

−1.1554. The corresponding value of target leverage is exp(l) = exp(−1.1554) = 0.31.
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Figure 6 shows the historical and model-implied differences between the debt levels for

firms with an above- and below-median value shock (Table A2 in the Appendix gives the

values). In the CDG model, regardless of the initial leverage, firms with a positive value

shock increase debt more than firms with a negative equity shock. As we have seen this is

inconsistent with actual firm behavior in the short run where a positive value shock typically

leads to a smaller increase in debt than a negative value shock. In this regard, the short-run

predictions of the CDG model are less accurate than the BC and BC-0G models, which

predict no difference in the level of debt between high and low shock firms. Thus, the CDG

model implies that firms always “pull away” from default when there is a negative shock by

reducing debt while the actual behavior of firms is, on average, to increase debt by more for

a negative shock than for a positive shock.

In estimating the parameters of the SD model, (λ, ν, σk, ρ), equations (42) and (54) in the

Appendix show that σk and ρ are not separately identified; only the product σkρ is identified.

The estimates of the three parameters are (λ̂, ν̂, ˆσkρ) = (0.1814,−1.0046,−0.0505). The

estimates of λ and ν are similar to those in the CDG model, and consequently, as Figure 5

shows, the average future level of debt, conditional on initial leverage, is very similar in the

two models.

While the SD and CDG models imply similar unconditional future expected levels of

debt, they have very different predictions for firms experiencing a positive or negative value

shock. Figure 6 shows that, in the short run, while the SD model implies more debt issuance

in the short run by negative-shock firms relative to positive-shock firms, the CDG model

implies the opposite. The key parameter that leads to this behavior in the SD model is ρ,

which is negative (since σkρ is negative) and this implies that a negative shock to firm value

leads to a positive shock to debt issuance. After the shock, and consistent with the empirical

evidence, high return firms increase their debt more than low return firms. The negative

value of ρ in the SD model means that firms’ debt issuance policy resembles pecking order

behaviour at short horizons and trade-off behavior at long horizons.

The speed of mean reversion of corporate leverage has been investigated extensively in

the literature although, as Frank and Goyal (2008) point out, the magnitude of the mean

reversion parameter is not a settled issue. Examples of reported estimates include 0.07-
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0.15 (Fama and French (2002)), 0.17-0.23 (Huang and Ritter (2009)), 0.13-0.39 (Lemmon,

Roberts, and Zender (2008)), and 0.34 (Flannery and Rangan (2006)). Our estimates of

0.1814 for the SD model and 0.1732 for the CDG model are within, but towards the lower

end of, the range of estimates found in the literature.12

In the next part of the paper we calibrate the models to historical default rates using

a panel data set of firms. For each model, the value of corporate bonds depends on the

dynamics of leverage – the ratio of debt to firm value – rather than the dynamics of debt

and firm value separately. As Appendix B shows, leverage dynamics in the CDG and SD

models are isomorphic and, in both models, are given by:

dlt = λ(l̄ − lt)dt+ σldWl,t. (12)

The crucial difference between the models is the size of leverage volatility σl. In the CDG

model σl is equal to asset volatility, σ, while in the SD model:

σl =
√
σ2
k + σ2 − 2ρσkσ (13)

where σk is the volatility of log-debt and ρ is the correlation between innovations in the

firm’s asset value and innovations in its debt.

We assume that firms with high asset volatility have high debt volatility and, specifically,

that both the correlation, ρ, and the ratio of debt volatility to asset volatility, κ, are constant

across firms, i.e., that for firm i, σik = κσi. This implies that, ω, the ratio of leverage volatility

to asset volatility, given by:

ω ≡ σl
σ

=
√
κ2 + 1− 2ρκ, (14)

12When estimating the (common) mean reversion parameter we assume a common target leverage.
Flannery and Rangan (2006) and Lemmon, Roberts, and Zender (2008) find that including firm-specific
heterogeneity in the estimation increases the estimate of speed of mean reversion and one may therefore
hypothesise that different values of ν may lead to substantially higher estimates of λ. To examine this
we reestimate λ and σkρ while holding the target leverage fixed at different values. We find that a target
leverage fixed in the range 30-60% (0-100%) produces a mean reversion in the range 0.11-0.17 (0.00-0.17),
which suggests that allowing for a firm-specific ν would not materially increase the speed of mean reversion
estimate.
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is also constant across firms. To estimate ω we first find all firm-years where the leverage is

at least 1% (a total of 99,707 firm-years). For every firm i and year t we then calculate the

annual log-change in asset value, log(
V it+1

V it
), and leverage, log(

Lit+1

Lit
), and, for all firms that

have available data in all 30 years of the data sample, 1988–2017 (238 firms), calculate the

ratio

√
V ar
(

log(
Lit+1

Lit
)
)

√
V ar
(

log(
V it+1

V it
)
) . The average value of this ratio is 1.5027. Using results in Appendix

B.2, over discrete intervals of length t, this ratio corresponds to ω
√

1−e−2λt

2λt
and therefore our

estimate of ω is 1.5027
√

2λt
1−e−2λt ; with λ = 0.1814 and t = 1 we have that ω̂ = 1.6409. Both

in estimating the default boundary in Section 4 and in pricing bonds in Section 5, we use

this ω̂ = 1.6409 to estimate a firm’s leverage volatility as ω̂ times its asset volatility.

From the estimate of ω̂ = 1.6409 and equation (14), together with the value of κρ =

ˆσkρ
σ

= −0.0505
0.24

= −0.2106 obtained above, we find κ = 1.1275 and ρ = −0.1868. It appears,

therefore, that the average volatility of log-debt is similar in magnitude to asset volatility

and that this, combined with a small (and negative) correlation between shocks to debt and

shocks to asset value, results in a level of leverage volatility that is substantially higher than

asset volatility.

In Section 6.7, as a robustness check, we estimate κ and ρ directly from the time series of

log-debt changes. This gives an estimate of the ratio of leverage volatility to asset volatility

that is very similar.

4 Matching historical default rates

We implement the four structural models described in Section 3.1 and, again, relegate details

about the data to Appendix A13.

For each model, we assume that the parameters for debt adjustment are common to

all firms and equal to those estimated in Section 3.3. For the deterministic and stochastic

debt adjustment models, we also implement versions where we allow the target leverage

ratio to be firm-specific. In this case, we calculate the average historical log-leverage l̂i

13Briefly, we use a data set of monthly corporate bond yield spreads from Merrill Lynch and TRACE for
the period 1996–2018 for non-callable fixed-rate bonds issued by industrial firms. The number of bond-month
observations is 119,765.

18



for each firm i and use this as the target log-leverage.14 This is motivated by Lemmon,

Roberts, and Zender (2008), Huang and Ritter (2009), and others who find that firms have

a target leverage which is firm-specific, stable and only to a lesser extent explained by firm

characteristics or macroeconomic factors.

A large part of the literature that investigates the ability of structural models to price

corporate debt matches models to a single historical default rate at a given maturity and

for a specific rating. Feldhütter and Schaefer (2018) show that this results in very noisy

estimates of default probabilities and, further, that matching models to default rates across

horizons and ratings vastly improves precision. We therefore use their approach and extract

a default boundary – d in equation (5) – common to all firms but specific to each model,

that provides the best fit to the cross-section of historical default rates.

Specifically, for each model, we find d using the following procedure. For each observed

spread in the data sample on bond i with a time-to-maturity T issued by firm j and observed

on date t, we calculate the firm’s T -year default probability πP (dLjt,Θ
P
jt, T ) where Ljt is

the time-t estimate of the firm’s leverage ratio and ΘP
jt is a vector containing the relevant

parameters for the specific model. Formulae for default probabilities are given in Appendix

B. Summary statistics for the bond sample are given in Table 3 and for firm-level quantities

in Table 4. We assume a constant asset Sharpe ratio θ and so the drift in firm value is

θσj + rTt − δjt, where rTt is the T -year riskfree rate. As is common in the literature, we use

an asset Sharpe ratio of 0.22 based on Chen, Collin-Dufresne, and Goldstein (2009).

For a given rating a and maturity T - rounded up to the nearest integer year - we

find all bond observations in the sample with the corresponding rating and maturity. For

a given calendar year y we calculate the average default probability πPy,aT (d) and we then

calculate the overall average default probability for rating a and maturity T , πPaT (d), by

computing the mean across the N years, πPaT (d) = 1
N

∑N
y=1 π

P
y,aT (d). We denote by π̂PaT the

corresponding historical default frequency. For rating categories AAA, AA, A, BBB, BB,

and B and horizons of 1-20 years we find the value of d that minimizes the sum of absolute

14In the models, the parameter of interest ν is different from target leverage. Equation (39) shows that

the relation between ν and target leverage l̄ is l̄ = ν − µ−δ−σ22
λ . We use a common adjustment

µ−δ−σ22
λ for

all firms given as
0.0996−0.044− 0.242

2

0.1732 = 0.1547 in the CDG model and
0.0996−0.044− 0.242

2

0.1814 = 0.1477 in the SD
model.
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differences between the annualized historical and model-implied default rates by solving

min
{d}

B∑
a=AAA

20∑
T=1

1

T

∣∣∣πPaT (d)− π̂PaT
∣∣∣. (15)

Bai, Goldstein, and Yang (2020) find that estimates of leverage are biased for C-rated

firms when using book values of debt as a proxy for market values of debt when calculating

firm value and this may bias the estimate of the default boundary. For this reason we

exclude the rating category C in the estimation of the default boundary in equation (15) for

all models. We return to this issue in Section 6.6.

Moody’s provide an annual report with historical cumulative default rates and these are

extensively used in the academic literature. The default rates are based on a long history

of default experience for firms in different industries and different regions of the world. In

Appendix C we use Moody’s default database to calculate historical default rates for U.S.

industrial firms and find them to be economically and statistically significantly different from

those published by Moody’s for global firms. We therefore use historical default rates for

U.S. industrial firms calculated using default data from the period 1970–2017; these are given

in Table A3 (‘US industrial firms, equal-weight’).

Table 5 shows the estimated default boundaries. The estimate of 0.8614 in the BC-0G

model is similar to the estimate of 0.8944 in Feldhütter and Schaefer (2018), while the default

boundary is lower in the BC model because the future level of debt is higher than in the

BC-0G model. The SD model has a lower boundary than other models because the volatility

of leverage is higher. In the BC and CDG models the volatility of leverage is equal to the

volatility of assets, σ, while in the SD model the volatility of leverage is equal to 1.6409× σ

as discussed in the previous section. Thus, the key differences between the SD model and

the BC/CDG models are a higher leverage volatility and, largely for this reason, a lower

default boundary. The default boundary estimates of 0.67-0.73 in the SD models are closer

to Davydenko (2013) and Davydenko, Strebulaev, and Zhao (2012)’s estimate of 0.66 than

the estimates in the CDG and BC-0G models.
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5 Pricing of corporate bonds

In this section we compare different models in terms of their ability to capture the term

structure of average spreads, average spreads across leverage quintiles, and the time series

variation of monthly average spreads. Following Eom, Helwege, and Huang (2004), Bao

(2009), Huang and Huang (2012), Feldhütter and Schaefer (2018), Huang, Nozawa, and

Shi (2020) and others, we assume that if default occurs, investors receive at maturity a

fraction of the originally promised face value, but now with certainty. Assuming the bond

is a zero-coupon bond, the credit spread, s, is then calculated as:

s = y − r = − 1

T
log[1− (1−R)πQ(T )] (16)

where y is the yield-to-maturity, r is the riskless rate, R is the recovery rate, T is the bond

maturity and πQ(T ) is the risk-neutral default probability.

Since the Black-Cox and stationary leverage models are one-factor models, all claims

have the same Sharpe ratios and so the bond Sharpe ratio is the same as the asset Sharpe

ratio. In the stochastic debt model this may not be the case and we assume that the bond

Sharpe ratio is the same as the asset Sharpe ratio, 0.22. We discuss this assumption further

in Section 6.1.

Table 4 shows summary statistics for the firms that have bonds outstanding in our sample.

We see that the most common rating is BBB followed by A, i.e. lower investment grade

ratings. We also see that equity volatility increases as rating decreases and the average

equity volatility is 24% for AAA and 61% for C. The increase in equity volatility is largely

due to increasing leverage while asset volatility changes much less with rating: the average

asset volatility is 22% for AAA and 26% for C.

5.1 Average spreads

Table 6 gives average actual and model spreads for different bond maturities. We report

spreads for three maturity ranges - 0–3 years (Short), 3–10 years (Medium), and 10–20

years (Long) - and, with some notable exceptions, the table shows that the models capture
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average spreads for both IG and HY bonds reasonably well. For investment grade bonds,

the main exceptions are the BC model, that predicts long-term spreads that are too high,

and the CDG models for which long-term spreads are too low. All the models underpredict

long-term speculative grade spreads, consistent with the evidence in Feldhütter and Schaefer

(2018).

Next, we compare the performance of the models for different levels of leverage and focus

on short-term spreads since this is the area that has presented most difficulty to diffusion-

based structural models. Figure 7 gives the log of average spreads on short-term investment

grade bonds broken down by leverage quintile, and shows that, except for the highest leverage

quintile, all the models underpredict short-term spreads. However, for quintiles 1–4, the

predicted spreads in the SD and SD-FL models are always closest to the average actual

spreads. For the quintile with the highest leverage, all the models overestimate spreads and

– except for the BC model that, as Table 6 shows, provides the worst overall predictions of

short-term investment grade spreads – the SD and SD-FL models are again closest to the

actual data.

Table 6 and Figure 7 are informative about the models’ ability to capture the term

structure of average spreads and the variation of average spreads with leverage. However,

they do not help us detect differences in pricing accuracy in time series and this is the issue

that we turn to next.

5.2 Monthly average spreads

We next investigate the models’ ability to capture the time series variation of spreads by

calculating monthly averages of actual and model-implied spreads. Specifically, for each

month t = 1, ..., T we calculate the average actual and model-implied spread (in basis points),

sat and sMt respectively. Table 7 shows the average absolute pricing error in basis points

1

T

T∑
t=1

∣∣∣sat − sMt ∣∣∣ (17)

for a given rating class and range of bond maturity. Across maturities, the SD and SD-

FL models have the smallest average errors of 52 and 57 bps while the errors in the other
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models are in the range 63-119 bps. The differences in model performance is predominantly

due to large differences in the models’ ability to capture short-term spreads. For example,

for investment-grade bonds the SD and SD-FL models have average errors of 36 and 38

bps, respectively, for investment grade while the remaining models have errors in the range

53-136.

Figure 8 shows why the SD and SD-FL models do better than the other models in

capturing short-term spreads (the figure shows log-spreads since the high spreads during the

crisis would otherwise dominate the graphs). In the figure, the monthly investment grade log

spreads for short maturities in the SD and SD-FL models are close to actual spreads (apart

from the period 2010-2014 when all the models underpredict spreads), while the predicted

spreads in the other models are too low for almost the entire sample period, except during

the crisis. While it is not immediately clear from the figure, the predictions of BG-0G

and CDG models flip sharply during the 2008-2009 financial crisis and the model spreads

become much too high. For example, the average actual spread during (outside) 2008-2009

is 382bps (48bps), while it is 674bps (16bps) in the BG-0G model and 370bps (44bps) in the

SD model. Although the average short-term investment grade spread in the BG-0G model

of 73bps matches the average actual spread of 77bps well, this is achieved by predicting

spreads that are too low during normal times and too high during the financial crisis. The

predictions in the CDG and CDG-FL models are similar to those in the BC-0G model. In

contrast, the average spread in the SD model is slightly lower (67bps) than in the BC-0G

model but closer to the actual spread in both normal times and during the crisis.

The excess sensitivity of short-term spreads to leverage, when leverage is high, in the

BC-0G and both CDG models, evident in Figure 8, reappears in a different form in their

predictions of spread volatility. Table 8 shows the standard deviation of changes in the

monthly spread for each of the models as well as for the data. Focussing again on short-term

investment grade spreads, the standard deviation in the SD models is 20 bps (SD) and 18

bps (SD-FL), which is slightly higher than the value of 16 bps in the data. In contrast, the

volatilities in the BC-0G and CDG models are too high: 25 bps in the BC-0G model and 30

bps and 43 bps respectively in the CDG and CDG-FL models. In summary, the SD models

provide a better fit to actual short-term spreads in both normal times and in the crisis and
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they also provide a better fit to the volatility of short-term spreads. To better understand

these results, and the relationship between them, we interpret the findings through the lens

of the distance-to-default measure

DDT =
ln( V0

K0
)− ln(d) + (µl − 1

2
σ2
l )T

σl
√
T

(18)

= − 1

σl
√
T
l0 +

(µl − 1
2
σ2
l −

ln(d)√
T

)
√
T

σl
(19)

where DDT is the T -year distance-to-default and µl and σl the drift and volatility of leverage.

Although the formula is derived from the Merton model, Jessen and Lando (2015) show its

ranking of firms according to their default risk is strongly robust to deviations in model

specification from the Merton model, such as asset dynamics and the default boundary.

On average, across horizons and rating classes, the default boundary d is estimated such

that DDT is consistent with historical average default frequencies and therefore a higher

σl leads to a lower d. Furthermore, the sensitivity of DDT to changes in leverage, − 1
σl
√
T

,

is decreasing in σl and T . Leverage, being observable, has the same value in the different

models and so, since σl is higher in the SD model, when leverage is either unusually high

or low, its impact on default probabilities and spreads is lower. This also implies that the

impact of higher leverage volatility on the volatility of DDT , and thus spreads, is also smaller

in the SD model and that the difference is most pronounced for short maturities.15

5.3 Stochastic volatility and jumps in firm value

So far we have compared the pricing performance of the stochastic debt model with well-

known and established diffusion models. These models have parameters that are relatively

easy to estimate over time and across firms allowing us to estimate the parameters based

on the firm value dynamics. Once the default boundary is estimated using default rates, we

then price corporate debt out-of-sample in the sense that spreads are not used as inputs when

estimating any of the parameters. An advantage of doing so is that the pricing performance

15The BC model has the same leverage volatility as the BC-0G model and yet has low standard deviations
in Table 8. The reason for this is that the model underpredicts short-term default probabilities (as Table
6 shows) and thus firms are considered too ”safe” relative to what is consistent with the data. This makes
credit spreads less sensitive to changes in leverage.
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of the models is not given in advance; if model parameters were estimated by fitting to

spreads, the SD model would automatically have the best pricing performance since the SD

model nests the other models.

In this section we compare the SD model with recent models that include stochastic

volatility and jumps in firm value. Since the models are non-nested and it is less straightforward

to extract the jump and stochastic volatility parameters from firm value dynamics, we instead

estimate the risk-neutral parameters by fitting the models to spreads as in Du, Elkamhi, and

Ericsson (2019). While this approach does not ensure that the models’ default rates are

consistent with historical default rates, the advantage is that, in principle, the risk-neutral

parameters can be estimated with high precision based on a single day of a yield spread

curve.

We follow Du, Elkamhi, and Ericsson (2019) and model firm value Vt, the variance of

firm value At, and log-debt kt under the risk-neutral measure as

dVt
Vt

= (r − δ − ξηQ)dt+
√
AtdW1,t + dJQt (20)

dAt = λA(νA − At)dt+ σAdW2,t (21)

dkt = λ(ν − lt)dt+ σkdW3,t (22)

where r is the riskfree rate, δ is the payout rate, and JQt is a jump process with constant

intensity ξ and a random jump size equal to ηQ. Conditional on a jump, firm value Vt jumps

to Vte
µQ with µQ ∼ N(µQ, γ2). This implies that ηQ = E(ηQ) = E(eµ

Q
) = eµ

Q+ 1
2
γ2 . Finally,

the correlation matrix C of the Brownian motions is

C =


1 ρV ρk

ρV 1 0

ρk 0 1

 , (23)

that is, volatility and debt have correlation ρV and ρk, respectively, with firm value. We

estimate eleven parameters (ξ, ηQ, γ, λA, νA, σV , ρA, λ, ν, σk, ρk), observe two state variables

(Vt and At) and set the default boundary d to 0.85 as it is poorly identified16.

16In the previous sections, consistent with the assumptions of the BC, CDG and SD models, we use a
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We estimate three models for the issuer with most bonds in our sample, Walmart, and fit

the models at the end of each year 2003–2017 in the sample for which we have CDS premiums

at both shortest and longest CDS maturities 0.5 and 30 years respectively17. Walmart is

rated AA throughout the sample period, has a low leverage between 0.08 and 0.22 in the

period 2001–2018 and an average asset volatility of 0.18, thus an example of a low-risk firm

with a high investment grade rating for which, as a result, it might be difficult for a pure

diffusion model to fit the credit spread curve. For a given date, we estimate the parameters by

using Monte-Carlo and minimize RMSEs of CDS premiums across maturities.18 The models

are the SD model (At is constant and there are no jumps in firm value), the stochastic

volatility with jumps (SVJ) model (kt is constant), and the full model with stochastic debt

and volatility and jumps in firm value (SVJ-SD).

Table 9 Panel B shows the RMSEs of the estimated spreads for the three models. The

average RMSE is 14bps for the SVJ model, 9bps for the SD model and 3bps for the SVJ-

SD model showing that stochastic debt helps significantly in matching average CDS spread

curves. The improvement is most dramatic for the 30-year maturity where the SVJ model

has three times as large average RMSE as the SD model. Panel B also shows that the

differences in fit increases when 2008 is excluded: the average RMSE is 14bps for the SVJ

model, 4bps for the SD model and 2bps for the SVJ-SD model. Even at a short horizon of

one year the SD model has lower average RMSE than the SVJ model, both when including

and excluding 2008.

Figure 9 shows the average model-implied CDS curves of the three models together with

the average actual CDS curve. The SVJ-SD model fails to capture the concavity of the

yield curve which leads to large pricing errors at short (6 months), intermediate (10-year)

constant asset volatility for each firm by calculating a time series average of unlevered asset volatilities of the
firm. Here, we calculate a time-varying asset variance by unlevering equity volatility, calculated as 255 times
the variance of the past three months’ daily equity returns. Firm value and payout rate are calculated as
in the previous sections (see Appendix A) while the riskfree rate is the 10-year swap rate. When estimating
the parameters and default boundary jointly, the default boundary typically becomes unrealistically low and
leverage volatility unreasonably large and for this reason we fix the boundary.

17Most years have maturities 1
2 , 1, 2, 3, 4, 5, 7, 10, 15, 20 and 30 years. Missing maturities are 4-year in

2003, 4- and 15-year in 2005, 30-year in 2006 and 20-year in 2010.
18We use 100,000 simulations and discretise the dynamics using steps of one month. When estimating the

parameters, we use Matlab’s fminsearch and start the optimization with the estimated parameters in Table
VII in Du, Elkamhi, and Ericsson (2019) for the SVJ model parameters and our estimates for the SD model
parameters.
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and long (30 year) maturities. As the individual spread curves in Figure 10 show, the poor

fit becomes particularly pronounced after the financial crisis in 2008. It may be surprising

that the SVJ model cannot match a concave spread curve, but during the post-crisis period

Walmart’s payout rate exceeded the riskfree rate, making the risk-neutral asset drift negative

(before considering jumps that amplify the effect), and this fact is difficult to reconcile with

the concave spread curve of a safe issuer.

Figure 10 shows that while the SVJ model fits CDS curves significantly worse on average

than the SD model, it does well in 2008 where the CDS curve was quite flat and high at short

maturities. Thus, it suggests that although the SD model outperforms the SVJ model in

normal periods, jumps are necessary to match CDS curves in a period with high uncertainty.

Figure 9 shows that adding jumps and stochastic volatility to the SD model improves the

fit particularly at the shortest maturities below two years where the SD model underpredicts

spreads. The fit improvement comes in particular from jumps (not shown) and suggests that

adding jumps to stochastic debt is important to capture spreads at very low maturities.

Overall, this section shows that recognising the stochastic nature of debt is important

in explaining the CDS curves for Walmart, a firm with a high investment grade rating and

with the most transactions in our sample.

6 Further topics and robustness

In this section we explore the extent to which the results are robust to alternative assumptions

regarding key quantities. In Section 6.1 we discuss the relation between bond and asset

Sharpe ratios. The consequences of including jumps in the amount of debt are discussed in

Section 6.2. In Section 6.3 we reexamine our main finding on debt dynamics when we (i)

restrict the sample of firms to those that exist every year in our data sample, (ii) use data

for the period 1965–1987 (rather than 1988–2017), and (iii) match firms exactly on firm size,

leverage, and cash. We examine how bond pricing errors are affected by using (i) Treasury

yields instead of swap rates as the riskfree rate in Section 6.4, (ii) CDS spreads instead of

bond spreads in Section 6.5, and (iii) the actual market value of debt instead of the book

value when calculating firm value in Section 6.6. Finally, Section 6.7 discusses an alternative

27



method of estimating the parameters of debt dynamics.

6.1 Bond Sharpe ratio

In the Black-Cox and CDG models, there is one risk factor and so the Sharpe ratio is the

same for the firm’s equity, debt and all other claims on its assets. In the stochastic debt

model, there are two risk factors and the Sharpe ratios are now not necessarily the same

for different claims issued by the same firm. Appendix B.4 shows that when we write the

dynamics of debt as

dkt = λ(ν − lt)dt+ σk

(
ρdW P

t +
√

1− ρ2dW2,t

)
(24)

where W P
t is the Brownian motion driving the asset value in equation (4) and W2,t is a

Brownian motion uncorrelated with W P
t , the asset Sharpe ratio in a CAPM world is SRV =

ρV,MSRM – where ρV,M is the correlation between asset value and the market and SRM is

the market Sharpe ratio. The corresponding bond Sharpe ratio is

SRb = −
(σkρ− σ

σl
ρV,M +

σk
σl

√
1− ρ2ρW2,M

)
SRM (25)

where ρW2,M is the correlation between W2,t and the market. Figure 11 shows the relation

between the bond Sharpe ratio and ρW2,M as well as the (constant) asset Sharpe ratio. In

the figure we use the estimated values σ = 0.24, σk = 1.1275σ, ρ = −0.1868 and assume that

SRM = 0.44 and ρV,M = 0.5 such that the asset Sharpe ratio is 0.22. To recap: dW2,M is the

component of the shock to a firm’s debt that is uncorrelated with the firm’s assets. If this

component has a significant negative correlation with the market, the bond Sharpe ratio is

higher than the asset Sharpe ratio, while the reverse is the case if the correlation is positive.

Thus, the model flexibly allows for both a positive and negative wedge between the asset

and bond Sharpe ratios.

Previous literature such as Chen, Collin-Dufresne, and Goldstein (2009), Chen (2010),

Feldhütter and Schaefer (2018), and Bai, Goldstein, and Yang (2020) rely on an equity Sharpe

ratio of 0.22 estimated by Chen, Collin-Dufresne, and Goldstein (2009) when calibrating
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one-factor structural models. Since all claims in one-factor models have the same Sharpe

ratio, there is no need to distinguish between the Sharpe ratios of the different assets. In

the stochastic debt model, this is not so and, in this case, the Sharpe ratio requires more

attention. When pricing bonds we have used a common bond Sharpe ratio of 0.22 for all the

models (and all firms). This implies that we have set ρW2,M for each firm such that the asset

and bond Sharpe ratios are both equal to 0.22. The reason for this choice is that we want

to be sure that any pricing differences between the models are due to differences in debt

dynamics and not to differences in bond risk premia. It remains, however, an interesting

issue for future research.

6.2 Jumps in debt

Our assumption that a firm’s total debt follows a diffusion process, is consistent with a firm

using credit lines or short-term commercial paper to make continuous adjustments to its

borrowings. However, for firms that raise debt in the corporate bond market, the issuance

and retirement amounts are often significant relative to the firm’s total debt and these

adjustments may be more reasonably viewed as jumps. Furthermore, in theoretical models

of dynamic capital structure with costly adjustment, changes in debt typically arise as jumps

(see for example Hackbarth, Miao, and Morellec (2006), Strebulaev (2007), Bhamra, Kuehn,

and Strebulaev (2010), Chen (2010), Geelen (2017), and Geelen (2019)).

This section examines the impact on credit spreads of jumps in a firm’s total debt and

focuses on short-term spreads because this is where the impact of shocks to debt is greatest.

We include a jump component, Jt, in the dynamics of kt, log total debt and choose the

parameters so that (i) jumps constitute a significant fraction of the variability in shocks to

debt, and (ii) the risk neutral distribution of leverage has the same mean and variance as in

the diffusion case.

Specifically, we assume that under the risk neutral measure:

dkt = λ(νQJD − lt)dt+ σk,JDdWk,t + dJt, (26)

where the parameters are as previously defined and the ”JD” subscript indicates the jump-
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diffusion model. The jump process, Jt, has intensity η, and jumps that are normally

distributed with mean ξ and standard deviation ζ. The risk-neutral dynamics of the firm’s

assets are unchanged, The risk neutral dynamics of the firm’s assets are unchanged:

dvt = (r − δ − σ

2
)dt+ σdWt, (27)

and so, the risk-neutral dynamics of leverage can be written as:

dlt = dkt − dvt = λ(l
Q

JD − lt)dt+ σl,JDdWl,t + dJt. (28)

where the parameters are as previously defined and the ‘JD’ subscript indicates the jump-

diffusion model. The jump process, Jt, has intensity η, and jumps that are normally

distributed with mean ξ and standard deviation ζ.

To provide a significant role for jumps, we set σk,JD, the volatility of the diffusion

component of shocks to total debt equal to σk/2, i.e., half its value in the diffusion model.

We set the jump intensity to one and the mean jump size equal to 0.9σk and so jumps occur

once per year on average and have an average size equal to 90% of the annual standard

deviation of total debt in the diffusion model. We then set the standard deviation of the

jump size, ζ, so that the variance of log-leverage in the diffusion and jump-diffusion models

is the same and l
Q

JD so that the mean value of log-leverage under the risk-neutral measure is

also equal in two models.

The first two moments of log-leverage in the jump-diffusion model are given by (Das

(2002))

E(lt+τ |lt) =
(
l
Q

JD +
ηξ

λ

)
(1− e−λτ ) + lte

−λt, (29)

V ar(lt+τ |lt) =
(
σ2
l,JD + η(ξ2 + ζ2)

)(1− e−2λτ

2λ

)
. (30)

Given the mean jump size, ξ, the assumption that σk,JD = σk/2 and the parameters of

the diffusion model, it is simple to show that, to equate the variance of log-leverage in the
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two models, the standard deviation of the jump size, ζ, must be set equal to:

ζ =

√
3
4
σ2
k − ρσkσ
η

− ξ2 = 0.0880.

Finally, to equate the mean value of leverage under the risk-neutral measure in the two

models, we set l
Q

JD = l
Q − ηξ

λ
.

Figure 12 compares the 18-month log-credit spread for the (SD) diffusion model and the

corresponding jump-diffusion model. For the diffusion model, the default boundary is left

unchanged at 0.7322. In the jump-diffusion model, the default boundary is set to 0.675 so

that, for a leverage ratio of 0.5 and a maturity of 18 months, the credit spread in the two

models is the same.

For safe firms, i.e., those with low leverage, spreads are higher in the jump-diffusion

model than in the diffusion model while the reverse is the case for risky firms, i.e., those

with high leverage. The relation between the results for the JD model and the SD model

thus mirrors that between the results for the SD models and the other models in Figure 7,

i.e., higher spreads for low leverage firms and lower spreads for high leverage firms. The

main difference between the SD model and the CDG and other diffusion models is the result

of a higher leverage volatility and, as Figure 12, shows, jumps in debt amplify this effect,

with still higher spreads for low leverage firms and still lower spreads for high leverage firms.

6.3 Debt dynamics conditional on equity returns

In section 2 we document that short run (long run) changes in firms’ debt levels are negatively

(positively) correlated with their short run equity returns. In this section we show that this

pattern is robust to using a different sample period, accounting for survivorship bias, and

matching firms exactly on leverage, size and cash holdings.

Different sample period.

When we examine debt dynamics in Section 2 we use firm data from CRSP/Compustat

for the period 1988-2017. In particular, we start our sample period in 1988 to be consistent

with the bond data sample. CRSP/Compustat has data available prior to 1988 and to see

whether debt dynamics follow a similar pattern in the earlier period, Figure A1 shows debt
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growth rates for high and low equity return firms in the period 1965-1987. The figure shows

that the pattern of debt dynamics for the 1965-1987 sample is similar to that for 1988-2017.

Over a three-year horizon, except in the case of high leverage, firms that experience a low

equity return have higher growth rate of debt than firms with a high equity return. As

before, after the shock, the pattern is reversed.

Survivorship bias.

When we examine debt dynamics, we use all available firm data and firms may not be in

the data base for the whole sample period. They may have missing data for several reasons

such as default or going private through an LBO. Since the patterns of debt growth rates

we document are prevalent for all leverage groups, we think it unlikely that our results are

driven by firms exiting the sample. For example, default exits are much more common for

highly leveraged firms than for lowly leveraged firms, while LBOs are more frequent for

firms with low leverage than firms with high leverage. Nevertheless, to further address this

concern, we look at the subset of 238 firms that have data in CRSP/Compustat for every

year in the 1988-2017 period, in total 30 years, and leverage of at least 0.01 in all years.

Figure A2 shows that the pattern of debt growth rates of high and low equity shock firms

is again – although more noisy due to the smaller sample – similar to those documented in

Section 2.

Selection bias.

It is possible that there is a selection bias such that on average high- and low-return firms

are different in some dimension. For example, Frank and Goyal (2003) find that small high-

growth firms are more likely to issue equity in response to a financing deficit. To explore this

issue, we control for firm size in the following way. For each year t, we sort the firms that

have available data in year t as well as in year t+3 according to their firm size in year t. The

two largest firms make up the first pair, numbers 3 and 4, in terms of size, the second pair,

and so forth (if there is an uneven number of firms, the smallest firm is discarded). In each

pair the firm with the higher (lower) equity return between t and t+3 is classified as a “high

equity return” (“low equity return”) firm. The advantage of this approach is that we can

precisely match the sizes of high and low return firms. The disadvantage is that the average

difference in return between high and low returns will be smaller and the corresponding
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difference in the debt growth rates also smaller. Figure A3 (“Same firm size”) shows debt

growth when firms are sorted according to size. We see that the pattern documented in

Section 2 is robust to controlling for firm size.

Lemmon and Zender (2010) show that firms with debt capacity concerns are more likely

to use equity financing. It is plausible that firms with lower leverage have both greater debt

capacity and also lower expected returns on equity. In this case, low equity return firms

could be more likely to have lower leverage and spare debt capacity, leading to the negative

correlation between short-run debt growth and short-run equity returns (even though this

explanation cannot explain the positive long-run correlation). While we attempt to control

for leverage by looking at firms within leverage intervals, there remain small differences in

average leverage between high and low equity return firms as Table 2 shows. We therefore

pair firms as above according to leverage (instead of on firm size) and the results in Figure

A3 (“Same initial leverage”) show that the documented pattern in debt growth is also robust

to controlling precisely for leverage.

Similarly, firms with high levels of cash have more debt capacity and lower expected

returns and this might explain the negative debt-equity correlation. Figure A3 (“Same

initial cash level”) shows that this is not the case and that the pattern in debt growth is

robust to sorting on cash (as a percentage of firm value).

6.4 The riskfree rate

In the main analysis we use swap rates as riskfree rates. Traditionally, Treasury yields have

been used as riskfree rates, but recent evidence shows that swap rates are a better proxy than

Treasury yields. A major reason for this is that Treasury bonds enjoy a convenience yield that

pushes their yields below riskfree rates (Feldhütter and Lando (2008), Krishnamurthy and

Vissing-Jorgensen (2012), and Nagel (2016)). The convenience yield is for example due to the

ability to post Treasuries as collateral with a significantly lower haircut than other securities.

Nevertheless, Treasury yields are used as the riskfree rate in some studies and we therefore

also calculate actual bond yield spreads using Treasury yields as riskfree rates. Specifically,

we replace swap rates with Treasury par yields from Gürkaynak, Sack, and Wright (2006)

when we calculate actual spreads. Table A5 shows the average monthly pricing errors in this
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case. Pricing errors are substantially larger for all models when using the Treasury yield

instead of the swap rate, consistent with the view that Treasury yields contain a convenience

yield that is outside the scope of this paper. Most importantly, however, the relative ranking

of the models does not change. In particular, the SD models capture short-term spreads

better than the other models.

6.5 CDS spreads

There is substantial evidence that corporate bond prices are affected by bond market illiquidity

and the size of the illiquidity component has been shown to be significant during the financial

crisis 2008-2009 (see for example Bao, Pan, and Wang (2011), Dick-Nielsen, Feldhütter, and

Lando (2012), Feldhütter (2012), Feldhütter and Schaefer (2018), and Huang, Nozawa, and

Shi (2020)). The presence of an illiquidity component in spreads could distort our results.

Longstaff, Mithal, and Neis (2005) and others argue that CDS spreads are less affected

by illiquidity and thus may be a better proxy for ‘true’ credit spreads than bond spreads.

Accordingly, as a robustness check, we recompute estimates of the model pricing errors using

CDS premiums.

Specifically, we replace bond yield spreads in our sample with CDS spreads whenever

possible and discard the remaining bond yield spreads. We use daily USD CDS spreads

from from Markit for contracts on senior unsecured debt with the modified restructuring

clause. These data are available from 2001. For each bond-month observation in our main

bond sample, we find CDS spreads on the last day in the month for which there exists at least

one CDS spread on the issuing firm. If available, we linearly interpolate between the two

CDS spreads nearest in maturity to compute a synthetic CDS spread with the same maturity

as the bond. If the bond maturity is lower (higher) than that of the available CDS with

the lowest (highest) maturity, we use the CDS spread with the lowest (highest) maturity.

The period covered in the final CDS sample runs from January 2001 (the beginning of the

CDS sample) to March 2018 (the end of the bond sample). The CDS sample has 44,175

observations and we winsorize the CDS spreads at the 1% and 99% level. The mean (median)

CDS spread is 135bps (56bps) while the mean (median) bond spread is 160bps (69bps) and

the correlation between the CDS and bond spread is 84%.
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Table A6 shows monthly pricing errors when using CDS spreads to measure the credit

spread. Comparing these results to those in Table 7, that contains the corresponding results

using bond spreads, we note that the results are similar to those for bonds in that the SD

models have the smallest average errors (61–74bps) compared to 88–129bps for the other

models and, as before, the improved fit is mainly due to a much better fit to short-term

spreads.

6.6 Using market values of debt

In the main analysis we use the book value of debt as a proxy for the market value when

calculating firm value. Since firms issue debt close to par this proxy works well in most cases.

However, for firms that have recently gone into distress, the proxy may be less accurate, and

for this reason we exclude the most risky C-rated firms when estimating the default boundary.

To further mitigate the concern that using book value of debt in our calculation of

firm value affects our main results, we use actual market values of debt from Bretscher,

Feldhütter, Kane, and Schmid (2021) (BFKS). Using a comprehensive data set on bond and

loan valuations from secondary market transactions, BFKS calculate the market value of

debt for a cross-section of firms for the period 1998–2018 and we use their market values to

calculate the leverage ratio for firm i in month t as

DBV
it

DMV
it + EMV

it

(31)

where DBV is the book value of debt, DMV is the market value of debt and EMV is the

market value of equity.19 For every bond-month observation in our main sample, we replace

the leverage ratio calculated using the book value of debt with the market leverage in equation

(31) and discard the bond-month observation if market data from BFKS is not available.

The data set in this sample has 66,438 bond-month observations compared to 101,059 in

the main sample. The results are similar when using market values of debt as Table A7

shows20: the SD models have the lowest pricing errors (59–62bps compared to 83–101bps

19We are grateful to Bretscher, Feldhütter, Kane, and Schmid (2021) for sharing the data with us and
details of how the market value is calculated is given in their paper.

20We include C-rated firms when estimating the default boundary because there is no potential bias when
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for the other models) and the models outperform particularly when pricing short-maturity

bonds (57–77bps compared to 114–162bps for the other models).21

6.7 Alternative estimation of debt dynamics parameters

In the main analysis we estimate ρ, the correlation between debt and asset value, from the

dynamics of debt and the ratio of leverage volatility and asset volatility. In this section we

estimate the correlation directly from data on changes in debt and equity returns.

We focus on firms that have available data in all 30 years of the data sample and for each

firm we calculate the correlation between log equity returns (taking into account dividends

and stock splits) and log book debt changes at horizons of one, two, and three years. We

use equity-debt correlations as a proxy for the correlations between asset values and book

debt22. The first row ’Data’ in Table 10 shows the correlations and we see that the 1- and

2-year correlations are (modestly) negative while the 3-year correlation is positive.

For comparison the second row ’Benchmark model’ in the table shows the model-implied

correlations as well as the instantaneous correlation (T = 0). An analytical expression for

the correlation over discrete intervals is derived in equation (57). We see that the benchmark

model shows a similar pattern of correlations from negative at two years or less to a positive

three-year correlation. Furthermore, the instantaneous correlation is substantially lower (i.e.,

more negative) than the discrete-time correlations and therefore it is important to account

for this difference when estimating the model correlation from data counterparts.

To estimate the instantaneous correlation from data correlations, we hold the parameters

of the SD model fixed, except ρ, which we estimate by minimizing the sum of squared

differences between the empirical and model-implied correlations at one, two and three years.

The estimate is ρ̂ = −0.1878, shown in the last row of the table, which is virtually identical

using market values of debt and in the estimation we winsorize leverage ratios at 0.9
k where k is the default

boundary (the highest leverage in the sample is 2.36 and if we did not winsorize the upper bound on the
default boundary would be 1/2.36 = 0.42).

21We have left out results on average spreads, volatility of spreads and default boundary estimates because
they are similar to the those in the main section, but they are available on request.

22We do not estimate the correlation between changes in debt and changes in a firm’s asset value because
extreme observations due to corporate events bias the estimate upwards (for example, a merger between two
identical firms doubles debt and asset values). The correlation between changes in debt and equity is not
the same as the correlation between debt and a firm’s asset value but, since the correlation is small in this
case, we ignore this difference.
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to the estimate obtained earlier.

7 Conclusion

We investigate how the dynamics of corporate debt policy affect the pricing of corporate

bonds. We find empirically that debt issuance has a significant stochastic component that

has a modest, and in fact often negative, correlation with shocks to the firm’s asset value. As

a consequence of both these features – the significant size of shocks to debt and the low level

of correlation with the firm’s assets – the volatility of leverage is significantly higher than

the volatility of asset returns over short horizons. At long horizons, the relation between

leverage volatility and asset volatility is reversed due to mean reversion in leverage.

We incorporate these debt dynamics into the default boundary within both a standard

structural model (where firm value follows a Geometric Brownian Motion and the Sharpe

ratio is constant) as well as a newer structural model with stochastic asset volatility and

jumps in asset value. In the context of structural models of credit risk, incorporating

these dynamics results in a stochastic default boundary and a volatility of leverage that

is substantial higher at short horizons than asset volatility. Compared to existing diffusion

models, the model provides more accurate pricing predictions in both the cross-section and

time series and in terms of both absolute pricing errors as well as volatility of spread changes.

The improvement relative to standard diffusion models comes mainly from more accurate

pricing of short-maturity investment grade bonds. This is due to the model’s predictions,

relative to existing models, of higher spreads for firms with low credit risk and lower spreads

for firms with high credit risk. Compared to a model with stochastic volatility and jumps

but deterministic debt, including stochastic debt again leads to more accurate predictions of

the term structure of credit spreads.

There is a growing literature focusing on the determinants of credit spreads which finds

that tail risk, jump risk, and illiquidity are important factors to include when modelling

spreads. Our results show that more accurate modelling of firms’ debt issuance behaviour is

another important factor that can further improve models of credit risk.
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A Data

In our analysis we use firm variables (for example, leverage and equity volatility) along

with corporate bond prices and individual bond information and we also calculate historical

default rates. We focus on the US market and our main data sources are: firm variables from

CRSP/Compustat, corporate bond quotes from the Lehman Brothers and Merrill Lynch

databases, corporate bond transaction prices from the Trade Reporting and Compliance

Engine (TRACE), bond information from the Mergent Fixed Income Securities Database

and default data from Moody’s Default and Recovery Database. The data sources are well

known and used in a large number of studies. Below we provide a brief description of each.

Firm variables

Firm variables are collected in the CRSP/Compustat Merged Database and computed

as in Feldhütter and Schaefer (2018). For a given firm and year the nominal amount of debt

is the debt in current liabilities (DLCQ) plus long-term debt (DLTTQ) in the fourth quarter

of the year. We restrict our analysis to industrial firms and so exclude utilities (SIC codes

4900-4949) and financials (SIC codes 6000-6999). To be consistent with the corporate bond

data set, we restrict the firm data we use to the period 1988-2017. The leverage ratio is

calculated as (nominal amount of debt)/(market value of equity + nominal amount of debt)

where the market value of equity is calculated as the number of shares outstanding (CSHOQ)

times the closing share price in the quarter (PRCC). The number of firm-year observations

with both the level of debt and market value of equity available is 131,971 and the number

of firms is 14,503.

Equity volatility σE,t is computed as
√

255 times the standard deviation of daily stock

returns in the past three years. If there are no return observations on more than half the

days in the three-year window, we do not calculate equity volatility. We follow Feldhütter

and Schaefer (2018) and calculate asset volatility at time t as (1−Lt)σE,t and multiply this

by 1 if Lt < 0.25, 1.05 if 0.25 < Lt ≤ 0.35, 1.10 if 0.35 < Lt ≤ 0.45, 1.20 if 0.45 < Lt ≤ 0.55,

1.40 if 0.55 < Lt ≤ 0.75, and 1.80 if Lt > 0.75. For a given firm we then compute the average

asset volatility over the sample period and use this constant asset volatility for every day in

the sample period.
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The payout rate is the total outflow to stake holders divided by firm value. This is

computed as the sum of the previous year’s interest payments, dividend payments, and net

stock repurchases divided by the sum of market value of equity and book value of debt. The

payout ratio is winsorized at 0.13 as in Feldhütter and Schaefer (2018).

Corporate bond yield spreads

We use several sources to arrive at our U.S. corporate bond data set for the period April

1988 to March 2018. For the period April 1988 to December 1996 we use monthly quote

data from the Lehman Brothers Fixed Income Database and include only actual quotes.

For the period January 1997 to June 2002, we use quotes provided by Merrill Lynch (ML)

on all corporate bonds included in the ML investment grade and high-yield indices. For

each bond-month we use the last quote in the month. Feldhütter and Schaefer (2018) show

that there is a significant bid-bias in bond quotes for short-maturity bonds and we therefore

follow Feldhütter and Schaefer (2018) and exclude ML and Lehman quotes for bonds with a

maturity less than three years. For the period July 2002-June 2017 we use transactions data

from Enhanced TRACE and for the period July 2017-March 2018 transactions data from

standard TRACE. We filter transactions according to Dick-Nielsen (2009, 2014) and focus

on transactions with a volume of $100,000 or more. When using TRACE, we calculate one

yield observation for each bond-month by computing the median yield for the bond in the

month.23 When we match yield observations to firm variables, we use firm variables from

the day the median is observed.

Bond information

We obtain bond information from the Mergent Fixed Income Securities Database (FISD)

and limit the sample to senior unsecured fixed rate or zero coupon bonds. We exclude

bonds that are callable, convertible, putable, perpetual, foreign denominated, Yankee, or

have sinking fund provisions.24 We use only bonds issued by industrial firms and restrict our

sample to bonds with a maturity of less than 20 years to be consistent with the maturities

of the default rates we use as part of the estimation. After merging the bond and firm data,

23If there are N observations in a month where N is even, we sort the observations increasingly and use
the N/2’th observation.

24For bond rating, we use the lower of Moody’s rating and S&P’s rating. If only one of the two rating
agencies have rated the bond, we use that rating. We track rating changes on a bond, so the same bond can
appear in several rating categories over time.
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the number of bond-month observations is 119,765. We winsorize spreads at the 1% and

99% level.

Riskfree rates

As in Feldhütter and Schaefer (2018), Bai, Goldstein, and Yang (2020), and others we

calculate corporate bond yield spreads relative to the swap rate and, for a given date, use

the available rates among the 1-week, 1-month, 2-month, and 3-month LIBOR and 1, 2, 3,

4, 5, 6, 7, 8, 9, 10, 12, 15, 20-year swap rates, interpolating linearly to obtain a swap rate

at the exact maturity of the bond. Before 1998 the longest swap maturity is 10 years and

so, for longer maturities in the early period, we use the (interpolated) Treasury CMT rate

plus the swap spread at the longest maturity for which a swap rate is available. LIBOR and

swap rates are downloaded from Bloomberg.

Default data

Data on defaults are from Moody’s Analytics’ Default and Recovery Database (DRD

v2.0). In the period from 1919 to 2018, the database contains the rating history for 27,750

unique firms and 11,024 default events. There are four events that constitute a debt default:

a missed interest or principal payment, a bankruptcy filing, a distressed exchange, and a

change in the payment terms of a credit agreement or indenture that results in a diminished

financial obligation. Soft defaults (‘dividend omission’ and ‘BFSR default’) appear in the

database, but we follow Moody’s and exclude these when calculating default rates. The

database includes information on the (latest) company industry and domicile.

We set the recovery rate to 33.48% which is Moody’s (2018a)’s average recovery rate, as

measured by post-default trading prices, for senior unsecured bonds for the period 1983-2017.

B Analytical results

All models assume that firm-value dynamics follows a geometric Brownian Motion (see

equation (4)):

dVt
Vt

= (µ− δ)dt+ σdWt, (32)
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where µ is the expected return on the firm’s assets, δ is the payout ratio, and σ is the asset

return volatility. The dynamics for the log of firm value, vt = log Vt, is

dvt = (µ− δ − σ2

2
)dt+ σdWt. (33)

B.1 Default probabilities

In the Black-Cox model the debt level is given as K(t) = K0e
γt and the cumulative default

probability at time t is (see Bao (2009))

πP (dL0,Θ
P , t) = N

[
−
((− log(dL0) + a0t

σ
√
t

)]
+ exp

(2 log(dL0)a0

σ2

)
N
[ log(dL0) + a0t

σ
√
t

]
a0 = µ− δ − γ − σ2

2
(34)

where L0 = K0

V0
is the current leverage and ΘP = (µ, σ, δ, γ). The risk-neutral default

probability, πQ, is obtained by replacing µ with r in equation (34). The default probability

in the constant boundary model is given by setting γ = 0 in (34).

In the stochastic debt model the dynamics of the log-debt level, kt, is (see equation (10))

dkt = λ(ν − lt)dt+ σkdWk,t (35)

If we assume that the bond Sharpe ratio is θ, then lt follows the following risk-neutral

dynamics25

dlt = λ(l̄Q − lt)dt+ σkdWk,t − σdWQ
t , (36)

where l̄Q = ν − r+(σ−σl)θ−δ−σ
2

2

λ
. It is convenient to write the dynamics as

dlt = λ(l̄Q − lt)dt+ σldWl,t (37)

25It is straightforward to show that the dynamics in the SD model of lt under P and Q is the same as the

dynamics in the CDG model with σ replaced by σl and ν replaced by ν∗ where ν∗ = ν+
σ2
V

2λ −
σ2
l

2λ+ σlθ
V

λ −
σV θ

V

λ .
Assuming a bond Sharpe ratio of θ in the CDG model then gives rise to the risk-neutral dynamics in equation
(36). Alternatively, one can assume that the CAPM holds and derive the result using the Feynman-Kac
theorem.
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where σl =
√
σ2
k + σ2 − 2ρσkσ. Since the default time is τ = inf{t|0 ≤ lt+ log(d)}, we define

l̃t = lt + log(d) which has the dynamics

dl̃t = λ(¯̄lQ − l̃t)dt+ σldWl,t, (38)

where ¯̄lQ = l̄Q + log(d). The default time is the first time l̃ hits 0.

Log-leverage in equation ((38)) follows an Ornstein-Uhlenbeck (OU) process and the

default time is therefore the first hitting time (FHT) of an OU process. There are no closed-

form solutions for the distribution of the FHT of an OU process in the general case and we

use numerical methods.

B.2 Expected value of debt level

The expected debt level in the Merton model is constant while it is deterministically increasing

in the Black-Cox model.

To calculate the expected debt level in the stochastic debt model, we can write the

dynamics for leverage under the natural measure as:

dlt = λ(l̄P − lt)dt+ σldWl,t (39)

where W P is the Brownian motion driving firm value, Wi is independent of W P , and

l̄P = ν − µ−δ−σ
2

2

λ
.

We have that both vt and lt are normally distributed,

vt = v0 + (µ− δ − σ2

2
)t+ σWv,t (40)

lt = l̄P + e−λt(l0 − l̄P ) + (σkρ− σ)e−λt
∫ t

0
eλsdWv,s + σk

√
1− ρ2e−λt

∫ t

0
eλsdWi,s (41)

This immediately gives

E(kt) = v0 + (µ− δ − σ2

2
)t+ l̄P + e−λt(l0 − l̄P ). (42)
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The covariance is

Cov(lt, vu) = Cov
(

(σkρ− σ)e−λt
∫ t

0
eλsdWv,s + σk

√
1− ρ2e−λt

∫ t

0
eλsdWi,s, σWv,u

)
(43)

= (σkρ− σ)e−λtσE
(∫ t

0
eλsdWv,s ×Wv,u

)
(44)

= (σkρ− σ)e−λtσE
(∫ t

0
eλsdWv,s ×

∫ u

0
dWv,s

)
(45)

= (σkρ− σ)e−λtσE
(∫ min(t,u)

0
eλsds) (46)

= (σkρ− σ)e−λtσ
1

λ
(eλmin(t,u) − 1) (47)

where the Itô isometry is used. Their correlation is

ρlt,vu = Corr(lt, vu) =
(σkρ− σ)e−λtσ 1

λ
(eλmin(t,u) − 1)

√
σ2uσlt

(48)

=
(σkρ− σ)e−λt(eλmin(t,u) − 1)

λσlt
√
u

(49)

where we have that σlt = σl

√
1−e−2λt

2λ
which is well-known from the properties of the Ornstein-

Uhlenbeck process.

According to Azzalini and Valle (1996) p. 716-717 we have that lt−E0(lt)
σlt

given vu−E0(vu)
σvu

>

0 is skew-normal distributed with mean
√

2
π
ρlt,vu and therefore

E[lt|vu > E0(vu)] =

√
2

π

(σkρ− σ)e−λt(eλmin(t,u) − 1)

λ
√
u

+ l̄P + e−λt(l0 − l̄P ). (50)

Now

E[vt|vu > E0(vu)] = v0 + (µ− δ − σ2

2
)t+ σE[Wv,t|Wv,u > 0] (51)

and using the results in Azzalini and Valle (1996) we have E[Wv,t|Wv,u > 0] =
√

2
uπ

min(t, u)
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so

E[kt|vu > E0(vu)] =

√
2

π

(σkρ− σ)e−λt(eλmin(t,u) − 1)

λ
√
u

+l̄P + e−λt(l0 − l̄P ) + v0 + (µ− δ − σ2

2
)t+ σ

√
2

uπ
min(t, u).(52)

Likewise

E[kt|vu < E0(vu)] = −
√

2

π

(σkρ− σ)e−λt(eλmin(t,u) − 1)

λ
√
u

+l̄P + e−λt(l0 − l̄P ) + v0 + (µ− δ − σ2

2
)t− σ

√
2

uπ
min(t, u).(53)

so

E[kt|vu > E0(vu)]− E[kt|vu < E0(vu)] =

√
8

πu

[ (σkρ− σ)e−λt(eλmin(t,u) − 1)

λ
+ σmin(t, u)

]
. (54)

Since vu is normally distributed, its mean and the median are the same and so the expected

value of kt in the equation above is unchanged if we condition on vu being greater than the

median instead of the mean. Also, since there is a monotone relation between the value of

equity and the value of the firm, the expected value of kt is also unchanged if we condition

on the equity value – rather than the firm value – being greater than the median.

The same formulas hold for the stationary leverage model with σk = ρ = 0.

B.3 Debt-firm value correlation at discrete intervals

Since kt = `t + vt, it follows that cov(kt, vt) = cov(`t, vt) + var(vt), where (implicitly)

covariance and variance are conditional on the value of the variables at time zero, i.e.,

computed using a differencing interval of t. So, using equation (43), we have:

cov(kt, vt) = (σkρ− σ)σh(t) + var(vt) (55)
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where h(t) = 1
λ
(1− e−λt). Since

var(kt) = σ2
k

1

2λ
(1− e−2λt) ≡ σ2

kg(t) (56)

and var(vt) = σ2t we have

corr(kt, vt) =
( 1
√
t
√
g(t)

)[(
ρ− σ

σk

)
h(t) +

σ

σk
t

]
(57)

B.4 Sharpe ratios

In the Black-Cox and stationary leverage models there is one source of risk – the Brownian

motion driving asset value in equation (4) – and so the equity, bond, and asset Sharpe ratios

are identical. In the stochastic debt model there are two sources of risk: a Brownian motion

driving asset value in equation (4) and a Brownian motion driving debt changes in (10). This

implies that the equity, asset, and debt Sharpe ratios are not necessarily the same even when

assuming the CAPM holds. To see this, we assume that the value of the market follows

dMt

Mt

= µMdt+ σMdWM,t. (58)

Note that in the stochastic debt model the bond price is locally perfectly negatively correlated

with log-leverage and the correlation between log-leverage and the return of the market, ρl,M ,

is

ρl,M =
cov(dlt,

dMt

Mt
)

σlσM
=
cov(σkdWk,t − σdW P

t , σMdWM,t)

σlσM
=
σk
σl
ρk,M −

σ

σl
ρV,M . (59)

We can write the dynamics of debt as

dkt = λ(ν − lt)dt+ σk

(
ρdW P

t +
√

1− ρ2dW2,t

)
. (60)

where dW2,t is the innovation to k that is orthogonal to dW P
t and it follows that

ρk,M = ρ× ρV,M +
√

1− ρ2 × ρW2,M . (61)
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Note that since |ρk,M | ≤ 1, we have that

−
(1 + ρ× ρV,M√

1− ρ2

)
≤ ρW2,M ≤

(1− ρ× ρV,M√
1− ρ2

)
. (62)

In the CAPM SRi = ρi,MSRM , so the bond Sharpe ratio, SRb, is given as

SRb = −ρl,MSRM = −
(σkρ− σ

σl
ρV,M +

σk
σl

√
1− ρ2ρW2,M

)
SRM (63)

while the asset Sharpe ratio is SRV = ρV,MSRM .

C Default rate calculations

Moody’s provide an annual report with historical cumulative default rates and these are

extensively used in the academic literature as estimates of default probabilities. The default

rates are based on a long history of default experience for firms in different industries and

different regions of the world.

A number of studies find that ratings across industries and regions are not comparable:

Cornaggia, Cornaggia, and Hund (2017) find that default rates of financial institutions are

significantly different from default rates of similarly-rated non-financial institutions, Cantor

and Falkenstein (2001) find default rates of speculative-grade utility firms are significantly

different from default rates of similarly-rated non-utility firms, while Cantor, Stumpp, Madelain,

and Bodard (2004) find that ratings are more accurate for European firms than for North

American firms.

As in most studies of structural models of credit risk we focus on U.S. industrial firms. To

compare apples with apples we therefore use Moody’s default database to calculate historical

default rates for the subset of U.S. industrial firms in the Moody’s database. Hamilton and

Cantor (2006) discuss how Moody’s calculate default rates (Moody’s approach is based on

the methodology in Altman (1989) and Asquith, Mullins, and Wolff (1989)) and we review

their methodology in Appendix C.1.

In Appendix C.2 we detail our calculation of default rates for U.S. industrial firms and

compare our results with those published by Moody’s for all global firms. We find that
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default rates for U.S. industrial firms are economically different from Moody’s published

default rates for all rated firms. In Appendix C.3 we show that the differences in default

rates are also statistically significant.

C.1 Moody’s default rate calculations

Assume that there is a cohort of issuers formed on date y holding rating z. The number

of firms in the cohort during a future time period is nzy(t) where t is the number of periods

from the initial forming date (time periods are measured in months in the main text). In

each period there are three possible mutually exclusive end-of-period outcomes for an issuer:

default, survival, and rating withdrawal. The number of defaults during period t is xzy(t),

the number of withdrawals is wzy(t), and the number of issuers during period t is defined as

nzy(t) = nzy(0)−
t−1∑
i=1

xzy(i)−
t−1∑
i=1

wzy(i)−
1

2
wzy(t). (64)

The marginal default rate during time period t is

dzy(t) =
xzy(t)

nzy(t)
(65)

and the cumulative default rate for investment horizons of length T is

Dz
y(T ) = 1−

T∏
t=1

[
1− dzy(t)

]
. (66)

The average cumulative default rate is

D
z
(T ) = 1−

T∏
t=1

[
1− dz(t)

]
(67)

where d
z
(t) is the average marginal default rate26.

For a number of cohort dates y in a historical data set Y , Moody’s calculate the average

marginal default rate as a weighted average, where each period’s marginal default rate is

26Note that this calculation assumes that marginal default rates are independent.
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weighted by the relative size of the cohort

d
z
(t) =

∑
y∈Y

xzy(t)∑
y∈Y

nzy(t)
. (68)

We label default rates based on equation (68) for cohort-weighted default rates. In the

presence of macroeconomic risk as modelled in Feldhütter and Schaefer (2018) it is more

robust to use equal-weighted default rates where the average marginal default rate is calculated

as

d
z
(t) =

1

NY

∑
y∈Y

xzy(t)

nzy(t)
(69)

where NY is the number of cohorts in the historical dataset Y .

C.2 Calculating default rates for U.S. industrial firms

Moody’s default database appears to have a more extensive coverage of firms in the last 50

years compared to the previous 50 years. Specifically, there are 9,055 firms with a rating

at some point in the period 1919–1969 while there are 27,549 in the period 1970–2018. We

therefore restrict our calculation of default rates to start from January 1, 1970.

We calculate historical default rates for industrial firms but, as a check on our methodology,

we first replicate Moody’s default rates for all firms. Table A3 shows Moody’s (2018a)

reported historical default rates 1970–2017 and, in row 2, default rates for all firms calculated

using Moody’s methodology and their default database for the same sample period (January

1, 1970 to January 1, 2018) as in Moody’s (2018a). The calculated default rates are close,

but not identical, to Moody’s reported default rates. For example, the 10-year BBB default

rate, a focal point in the academic literature, is calculated to be 3.83% while Moody’s report

3.75%. We do not expect to replicate Moody’s rates exactly because Moody’s (2018b) note

that ”you will not be able to replicate the exhibits exactly, as the researchers have access to

non-public information that is not included in the database”.

When we restrict the sample to US industrial firms, historical default rates change quite
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dramatically as ’US industrial firms, cohort weight’ (row 3 in Table A3) shows. The BBB

10-year default rate, for example, is estimated to be 5.74% which is 53% higher than Moody’s

estimate. Thus, there is a substantial effect of restricting the sample to U.S. industrial firms.

We show in Appendix C.3 that the difference in default rates when using all firms and when

using US industrial firms is statistically significant and therefore it is important to restrict

the sample to correspond to firms used in our empirical analysis.27

Moody’s calculate average default rates by using a cohort-weighted average of default

rates. This leads to an uneven weighting across time. For example, default rates for AAA

(B) during the decade 1970–1979 are weighted 4.5 times higher (23 times lower) than default

rates during the most recent decade 2008-2017. In the presence of macroeconomic risk, it

is preferable to have an even weighting across time, and we therefore equally-weight default

rates. Table A3 shows that there is a moderate effect on default rates of equal weighting.

The 10-year BBB default rate increases from 5.74% to 6.43%. However, there is no clear

pattern in the direction that default rates change generally.

C.3 Are default rates of US industrial firms different from those

of all firms

In this section we calculate the statistical significance of the difference in default rates

calculated using US industrial firms and firms that are not US industrials using default

data from 1970–2017. We do so by calculating the distribution of the difference under the

assumption that both sets of firms have the same ex ante default probability.

Specifically, for a given rating r and horizon h (in years 1,...,20), we record the number

of firms in the January 1970, January 1971, ..., January 2017+1-h US industrial cohorts,

n1
1970, n

1
1971, ..., n

1
1977+1−h (sample 1) and the corresponding number in cohorts of the remaining

firms, n2
1970, n

2
1971, ..., n

2
1977+1−h (sample 2). We calculate the historical equal-weighted default

rate, p̂r,h as in the previous Section C.1 for all firms by combining the cohorts n1
y and n2

y

(combined sample).

27It may be surprising that the difference is significant given that Feldhütter and Schaefer (2018) show
that default rates have large confidence bands. However, the difference in default rates for two samples
exposed to the same macroeconomic shocks is more precisely estimated than either default rate separately.
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In year 1, corresponding to cohort 1970, we have n1
1970 + n2

1970 firms, where firm i’s value

under the natural measure follows a GBM,

dV i
t

V i
t

= (µ− δ)dt+ σdW P
it . (70)

We assume every firm has one h-year bond outstanding, and a firm defaults if firm value is

below face value at bond maturity, V i
h ≤ F . Using the properties of a Geometric Brownian

Motion, the default probability is

p = P (W P
iT −W P

i0 ≤ c) (71)

where c =
log(F/V0)−(µ−δ− 1

2
σ2)T )

σ
. This implies that the unconditional default probability is

N( c√
T

) where N is the cumulative normal distribution. For a given default probability p̂r,h

we can always find c such that equation (71) holds, so in the following we use p̂r,h instead of

the underlying Merton parameters that give rise to p̂r,h.

We introduce systematic risk by assuming that

W P
iT =

√
ρWsT +

√
1− ρWiT (72)

where Wi is a Wiener process specific to firm i, Ws is a Wiener process common to all

firms, and ρ is the pairwise correlation between percentage firm value changes, which we

set to ρ = 0.2002 following Feldhütter and Schaefer (2018). All the Wiener processes are

independent. We simulate the realized default frequencies in the year 1-cohort separately for

sample 1 and 2 by simulating one systematic, common for both samples, and n1
1970 + n2

1970

idiosyncratic processes in equation (72).

In year 2 we form a cohort of n1
1971 + n2

1971 new firms. The firms in year 2 have

characteristics that are identical to those of the previous firms at the point they entered

the index in year 1. We calculate the realized h-year default frequency of the year 2-cohort

as we did for the year 1-cohort. Crucially, the common shock for years 1-9 for the year

2-cohort is the same as the common shock for years 2-10 for firms in the year 1-cohort.

We repeat the same process for 48 − h years and calculate the overall realized cumulative
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10-year default frequency for the two samples, p̃1
r,h and p̃2

r,h, by taking an average of the

default frequencies across the 48 − h cohorts, and compute the difference d̃s1r,h = p̃1
r,h − p̃2

r,h.

Finally, we repeat this entire simulation 100,000 times, get d̃s1r,h, d̃
s2
r,h, ..., d̃

s100,000
r,h . A historical

difference is significant at say the 5% level of this historical difference is smaller than the

2.5% quantile or larger than the 97.5% quantile in the simulated distribution of differences.

There are three approximations in this calculation. First, in the main text we use monthly

cohorts while we use yearly cohorts in the simulation. Second, we assume all firms are

replaced each year, while this is not so in the actual cohorts. These two approximations

partially counterweight each other. Third, we do not use marginal default rates as above.

Table A4 shows the statistical significance of the difference in default rates. We see that

long-term default rates for risky firms (rated BBB or below) are higher than other firms

and the difference is statistically highly significant. For example, the 20-year BBB default

rate for US industrial firms is 15.83% which is 242% higher than that of other firms and the

difference is significant at the 0.1% level.
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0-20-year bond maturity

AAA AA A BBB BB B C all
Number of bonds 66 322 1486 1422 563 410 152 3129

Age 4.99 4.68 6.1 7.24 6.79 7.82 11.1 6.59
Coupon 5.6 6.23 6.99 7.61 7.58 7.46 7.73 7.18

Amount outstanding ($mm) 610 520 296 324 274 282 275 333
Time-to-maturity 6.87 6.45 6.69 7.11 6.78 6.16 7.90 6.82

Number of observations 2617 10667 36144 31172 11907 5679 2873 101059

0-3-year bond maturity

AAA AA A BBB BB B C all
Number of bonds 26 144 765 730 262 238 61 1884

Age 4.72 5.78 6.95 8.25 7.05 7.2 9.58 7.29
Coupon 3.94 4.73 5.82 6.62 6.92 6.63 7.44 6.15

Amount outstanding ($mm) 707 707 342 361 293 297 304 382
Time-to-maturity 1.59 1.43 1.45 1.39 1.51 1.47 1.61 1.44

Number of observations 513 2706 9668 8228 3072 1882 729 26798

3-10-year bond maturity

AAA AA A BBB BB B C all
Number of bonds 52 230 1025 864 330 184 80 2219

Age 3.43 3.77 4.73 5.78 5.41 6.78 8.74 5.16
Coupon 5.81 6.47 7.19 7.86 7.72 7.84 7.54 7.37

Amount outstanding ($mm) 667 488 291 326 280 292 258 334
Time-to-maturity 6.17 6.23 6.11 6.34 6.02 5.73 5.74 6.15

Number of observations 1605 6121 18967 15385 6263 2608 1097 52046

10-20-year bond maturity

AAA AA A BBB BB B C all
Number of bonds 16 80 293 347 129 77 51 745

Age 10.3 6.09 8.48 9.11 9.81 11 14.5 9.12
Coupon 6.65 7.6 8 8.15 8.04 7.93 8.13 8

Amount outstanding ($mm) 329 350 252 281 235 235 274 270
Time-to-maturity 14.55 14.56 14.92 14.91 14.93 14.52 14.54 14.84

Number of observations 499 1840 7509 7559 2572 1189 1047 22215

Table 3 Bond summary statistics. The sample consists of noncallable bonds with fixed coupons issued by
industrial firms. This table shows summary statistics for the data set. The data sample cover the period
1988Q2-2018Q1. ‘Number of bonds’ is the number of bonds that appear (in a particular rating and maturity
range) at some point in the sample period. For each quote we calculate the bond’s time since issuance
and ‘Age’ is the average time since issuance across all quotes. ‘Coupon’ is the average bond coupon across
all quotes. ‘Amount outstanding’ is the average outstanding amount of a bond issue across all quotes.
‘Time-to-maturity’ is the average time until the bond matures across all quotes.
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#firms Mean 10th 25th Median 75th 90th
Leverage ratio

AAA 15 0.12 0.03 0.05 0.07 0.14 0.25
AA 68 0.17 0.07 0.11 0.17 0.20 0.24
A 231 0.28 0.11 0.17 0.25 0.36 0.50

BBB 353 0.35 0.15 0.23 0.32 0.44 0.55
BB 208 0.44 0.20 0.32 0.42 0.56 0.68
B 122 0.56 0.26 0.38 0.58 0.71 0.87
C 50 0.69 0.41 0.56 0.72 0.87 0.95
all 571 0.33 0.11 0.18 0.29 0.44 0.60

Equity volatility
AAA 15 0.24 0.16 0.19 0.23 0.29 0.36
AA 68 0.25 0.16 0.20 0.24 0.29 0.38
A 231 0.31 0.19 0.24 0.29 0.36 0.41

BBB 353 0.33 0.21 0.25 0.31 0.39 0.47
BB 208 0.44 0.27 0.31 0.40 0.50 0.62
B 122 0.55 0.28 0.35 0.48 0.68 0.85
C 50 0.61 0.36 0.44 0.56 0.74 0.98
all 571 0.34 0.20 0.24 0.31 0.40 0.50

Asset volatility
AAA 15 0.22 0.17 0.20 0.20 0.24 0.25
AA 68 0.22 0.20 0.20 0.22 0.24 0.25
A 231 0.24 0.18 0.20 0.23 0.25 0.30

BBB 353 0.24 0.16 0.20 0.22 0.26 0.33
BB 208 0.26 0.17 0.21 0.26 0.31 0.34
B 122 0.27 0.17 0.22 0.25 0.30 0.37
C 50 0.26 0.11 0.19 0.23 0.31 0.40
all 571 0.24 0.17 0.20 0.23 0.26 0.32

Payout ratio
AAA 15 0.042 0.012 0.021 0.044 0.059 0.073
AA 68 0.037 0.010 0.018 0.034 0.050 0.065
A 231 0.041 0.017 0.024 0.037 0.052 0.071

BBB 353 0.047 0.018 0.028 0.042 0.059 0.085
BB 208 0.046 0.018 0.027 0.040 0.055 0.076
B 122 0.049 0.023 0.033 0.044 0.060 0.079
C 50 0.051 0.027 0.039 0.049 0.059 0.073
all 571 0.044 0.016 0.025 0.040 0.055 0.076

Table 4 Firm summary statistics. For each bond yield observation, the leverage ratio, equity volatility,
asset volatility, and payout ratio are calculated for the issuing firm on the day of the observation. Leverage
ratio is the ratio of the book value of debt to the market value of equity plus the book value of debt. Equity
volatility is the annualized volatility of daily equity returns from the last three years. Asset volatility is the
unlevered equity volatility, calculated as explained in the text. Payout ratio is yearly interest payments plus
dividends plus share repurchases divided by firm value. Note that since some firms change rating in our
sample period, the sum of firms over rating classes is greater than ’all’. Firm variables are computed using
data from CRSP and Compustat.
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Model Default boundary estimate (d̂)
BC-0G 0.8614
BC 0.7315
CDG 0.9978
CDG-FL 0.9103
SD 0.7322
SD-FL 0.6707

Table 5 Estimates of the default boundary. For each of the models we estimate the default boundary –
the fraction of the total face value of debt at which the firm defaults – by minimizing the distance between
average model-implied default probabilities and historical average default rates for a cross-section of horizons
1,...,20 years and ratings AAA, AA, A, BBB, BB, B. ‘BC-0G’ to the Black-Cox model with zero growth in
debt. ‘BC’ refers to the Black-Cox model. ‘CDG’ refers to the Collin-Dufresne and Goldstein (2001) model
where all firms have a common long-run target leverage. ‘SD’ refers to a model where the firm adjusts the
level of debt such that a long-run leverage, common to all firms, is targeted, and the level of debt is subject
to random shocks. ‘FL’ refers to models where the long-run target leverage is firm specific and calculated
as the historical average firm leverage. The historical average default rates are based on defaults of U.S.
industrial firms in the period 1970–2017.
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All Short Medium Long
Inv Actual spread 84 77 72 121

BC-0G 88
(49;132)

73
(22;162)

82
(46;112)

122
(91;142)

BC 99
(64;128)

36∗
(12;66)

93
(55;123)

189∗∗
(149;214)

CDG 73
(25;123)

117
(21;217)

51
(22;84)

72∗∗
(38;103)

CDG-FL 60
(21;109)

81
(18;183)

53
(21;86)

52∗∗∗
(24;76)

SD 107
(62;144)

67
(28;110)

107
(63;143)

153
(103;189)

SD-FL 86
(48;119)

59
(25;94)

89
(50;122)

111
(70;140)

Spec Actual spread 413 409 387 470
BC-0G 392

(223;578)
447

(162;873)
401

(250;518)
308∗∗∗
(240;354)

BC 363
(238;468)

248
(103;415)

412
(269;514)

398∗∗∗
(333;435)

CDG 345
(119;607)

641
(152;1208)

259
(116;426)

170∗∗∗
(86;270)

CDG-FL 385
(166;621)

502
(147;1008)

371
(179;528)

275∗∗∗
(159;353)

SD 349
(210;466)

423
(208;635)

353
(227;448)

251∗∗∗
(177;302)

SD-FL 400
(249;518)

408
(209;594)

428
(277;536)

334∗∗∗
(239;392)

Table 6 Actual and model credit spreads. For every model we imply out the default boundary by minimizing
the difference between model-implied and historical default rates. This table shows average actual and model-
implied corporate bond yield spreads. Spreads are grouped according to remaining bond maturity at the
spread observation date. ‘Actual spread’ is the actual spread to the swap rate. ‘BC-0G’ to the Black-Cox
model with zero growth in debt. ‘BC’ refers to the Black-Cox model. ‘CDG’ refers to the Collin-Dufresne
and Goldstein (2001) model where all firms have a common long-run target leverage. ‘SD’ refers to a model
where the firm adjusts the level of debt such that a long-run leverage, common to all firms, is targeted, and
the level of debt is subject to random shocks. ‘FL’ refers to models where the long-run target leverage is
firm specific and calculated as the historical average firm leverage. ‘Inv’ includes bonds rated AAA, AA, A,
and BBB, while ‘Spec’ includes bonds rated BB, B, and C. Confidence bands are simulation-based following
Feldhütter and Schaefer (2018) and are at the 95% level. * implies significance at the 5% level and ** at the
1% level. The sample period is 1988-2018 for spread of bonds with a maturity more than three years and
2002-2018 for bonds with a maturity less than three years.
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Average Short Medium Long
All BC-0G 63 109 40 42

BC 67 92 46 62
CDG 119 204 53 99

CDG-FL 87 127 41 92
SD 52 65 50 42

SD-FL 57 67 50 53
Inv BC-0G 44 72 31 29

BC 55 53 37 76
CDG 75 136 34 53

CDG-FL 62 83 33 72
SD 45 36 51 48

SD-FL 39 38 42 37
Spec BC-0G 194 247 169 166

BC 181 241 173 130
CDG 285 357 223 277

CDG-FL 218 282 177 196
SD 185 180 165 211

SD-FL 179 185 185 166

Table 7 Pricing errors of monthly credit spreads. This table shows how well structural models match average
monthly credit spreads. For a given rating r and maturity m, we find all bonds at the end of a given month
t that have this rating and maturity, calculate the average actual credit spread (in basis points) to the swap
rate, sarmt, and do this for all months in the sample. For each model, we likewise calculate a time series of
monthly average model credit spread (in basis points) sMrm1, ..., s

M
rmT . This table shows the average absolute

pricing error 1/T
∑T
t=1

∣∣∣sarmt − sMrmt

∣∣∣. ‘Short’ includes bond maturities in the range 0-3 years, ‘Medium’

3-10 years, and ‘Long’ 10-20 years. ‘BC-0G’ refers to the Black-Cox model with zero growth in debt. ‘BC’
refers to the Black-Cox model. ‘CDG’ refers to the Collin-Dufresne and Goldstein (2001) model where all
firms have a common long-run target leverage. ‘SD’ refers to a model where the firm adjusts the level of
debt such that a long-run leverage, common to all firms, is targeted, and the level of debt is subject to
random shocks. ‘FL’ refers to models where the long-run target leverage is firm specific and calculated as
the historical average firm leverage. ‘Inv’ includes bonds rated AAA, AA, A, and BBB, while ‘Spec’ includes
bonds rated BB, B, and C. The sample period for ‘Short’ is 2002:07-2018:03 while it is 1988:03-2018:03 for
‘Medium’ and ‘Long’.
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Average Short Medium Long
All Data 20 23 18 19

BC-0G 22 34 17 14
BC 18 18 18 17

CDG 27 61 12 9
CDG-FL 23 41 16 12

SD 15 24 12 10
SD-FL 16 23 14 11

Inv Data 14 16 13 14
BC-0G 18 25 15 14

BC 16 13 16 18
CDG 21 43 10 9

CDG-FL 18 30 14 10
SD 14 20 11 11

SD-FL 14 18 12 11
Spec Data 51 55 57 42

BC-0G 53 83 47 30
BC 41 47 46 31

CDG 66 141 36 22
CDG-FL 60 103 45 31

SD 41 67 31 23
SD-FL 41 62 36 25

Table 8 Volatility of monthly credit spreads. This table shows how well structural models match the volatility
of monthly credit spreads. For a given rating r and maturity m, we find all bonds at the end of a given
month t that have this rating and maturity, calculate the average actual credit spread (in basis points) to
the swap rate, sarmt, and do this for all months in the sample. For each model, we likewise calculate a time
series of monthly average model credit spread (in basis points) sMrm1, ..., s

M
rmT . This table shows the standard

deviation, in basis points, of monthly changes in the average credit spread. ‘Short’ includes bond maturities
in the range 0-3 years, ‘Medium’ 3-10 years, and ‘Long’ 10-20 years. ‘BC-0G’ refers to the Black-Cox model
with zero growth in debt. ‘BC’ refers to the Black-Cox model. ‘CDG’ refers to the Collin-Dufresne and
Goldstein (2001) model where all firms have a common long-run target leverage. ‘SD’ refers to a model
where the firm adjusts the level of debt such that a long-run leverage, common to all firms, is targeted, and
the level of debt is subject to random shocks. ‘FL’ refers to models where the long-run target leverage is
firm specific and calculated as the historical average firm leverage. ‘Inv’ includes bonds rated AAA, AA, A,
and BBB, while ‘Spec’ includes bonds rated BB, B, and C. The sample period for ‘Short’ is 2002:07-2018:03
while it is 1988:03-2018:03 for ‘Medium’ and ‘Long’.
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T = 0 T = 1 T = 2 T = 3
Data -0.034 -0.024 0.010
Benchmark model -0.1868 -0.104 -0.016 0.075
ρ̂ from data -0.1878

Table 10 Alternative estimates of debt-asset correlation. The first row (labelled ’Data’) shows the 1-, 2-,
and 3-year debt-equity correlations using firm-year observations based in firms that have available data in
all 30 years of the data sample. The second row (’Benchmark model’) shows model-implied correlations
between changes in log-level of debt and log-returns of equity in the stochastic debt model, where firm value

is given as dvt = (µ− δ− σ2

2 )dt+σdWt and log-debt is given as dkt = λ(ν− lt)dt+σkdWk,t where σ = 0.24,
µ = 0.1028, and δ = 0.05, λ = 0.1814, ν = −1.0046, σk = 0.2706 and ρ = −0.1868 (where ρ is the correlation
between Wt and Wk,t). The number in the second column is the instantaneous correlation while the next
three columns show correlations for 1-, 2-, and 3-year changes. The third row shows the correlation ρ in
the benchmark model that minimizes the sum of squared errors between model-implied and data 1-, 2-, and
3-year correlations (where empirical debt-equity correlations proxy for debt-asset correlations). The data is
from CRSP/Compustat and the sample period is 1988-2017.
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Fig. 2 Future debt growth as a function of initial leverage. For firm i, year t, and horizons 1,...,10 years,

we calculate log
(
Di,t+T
Di,t

)
where Di,t is the nominal level of debt for firm i in year t and T is the horizon in

years. The figure shows the average ratio for different initial leverage ratios and future horizons. The data
is from CRSP/Compustat and the sample period is 1988–2017.

67



Fig. 3 Future debt growth conditional on future three-year equity returns. For firm i, year t, and horizons

1,...,20, we calculate log
(
Di,t+T
Di,t

)
where Di,t is the nominal level of debt for firm i in year t and T is the

horizon in years. For each firm-year in the sample where the initial leverage ratio at time t of the firm is in
a certain interval, we calculate the future three-year equity return between t and t+ 3 and label firms with
a return higher (lower) than the (within this leverage group) median between t and t+ 3 ’High (Low) future
equity return’ firms. The figure shows the average log-ratio for high and low future equity return firms. The
dashed lines mark 95% confidence levels based on standard errors clustered at the firm level. The data is
from CRSP/Compustat and the sample period is 1988-2017.
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Fig. 4 Future growth in short-term debt, long-term debt, cash, and leverage conditional on future three-year

equity returns. For firm i, year t, and horizons 1,...,20, we calculate log
(
Bi,t+T
Bi,t

)
where Bi,t is the variable

of interest for firm i in year t and T is the horizon in years. For each firm-year in the sample, we calculate
the future three-year equity return between t and t + 3 and label firms with a return higher (lower) than
the (within this leverage group) median between t and t + 3 ’High (Low) future equity return’ firms. The
figure shows the average log-ratio for high and low future equity return firms. The dashed lines mark 95%
confidence levels based on standard errors clustered at the firm level. The data is from CRSP/Compustat
and the sample period is 1988-2017.
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Fig. 5 Future debt relative to current debt, model-fit. For firm i, year t, and horizons 1,...,10 years, we

calculate log
(
Di,t+T
Di,t

)
where Di,t is the nominal level of debt for firm i in year t and T is the horizon in

years. ’Data’ shows the average log-ratio for different initial leverage ratios and future horizons in the data.
The figure also shows fitted values from structural models. ‘BC-0G’ refers to the Black-Cox model with zero
growth in debt. ‘BC’ refers to the Black-Cox model. ‘CDG’ refers to the Collin-Dufresne and Goldstein
(2001) model where all firms have a common long-run target leverage. ‘SD’ refers to a model where the firm
adjusts the level of debt such that a long-run leverage, common to all firms, is targeted, and the level of debt
is subject to random shocks. The data is from CRSP/Compustat and the sample period is 1988-2017.
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Fig. 6 Future debt of firms with high future three-year equity returns minus future debt of firms with low

three-year equity returns. For firm i, year t, and horizons 1,...,20, we calculate log
(
Di,t+T
Di,t

)
where Di,t is the

nominal level of debt for firm i in year t and T is the horizon in years. For each firm-year in the sample where
the initial leverage ratio at time t of the firm is in a certain interval, we calculate the future three-year equity
return between t and t+ 3 and label firms with a return higher (lower) than the (within this leverage group)
median ‘High (Low) future equity return’ firms. The figure shows both the fitted values for the different
models and the values from the data of the difference in the average increase in log-debt for high and low
future equity return firms. ‘BC-0G’ refers to the Black-Cox model with zero growth in debt. ‘BC’ refers to
the Black-Cox model. ‘CDG’ refers to the Collin-Dufresne and Goldstein (2001) model where all firms have
a common long-run target leverage. ‘SD’ refers to a model where the firm adjusts the level of debt such that
a long-run leverage, common to all firms, is targeted, and the level of debt is subject to random shocks. The
data is from CRSP/Compustat and the sample period is 1988-2017.
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Fig. 7 Actual and model short-term investment grade credit spreads across leverage quintiles. For bonds
with an investment grade rating and a bond maturity less than three years, we calculate the average actual
spread (in bps) of all bond-month observations where the issuing firm has a leverage in the lowest quintile,
second-lowest quintile, ..., fifth-lowest quantile and compute the log of the average spread. For each leverage
quintile, the figure shows the log of the average spread in the data and for each of the models. The sample
period is 2002:07–2018:03.
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Fig. 8 Actual and model short term investment grade credit spreads. For the investment grade rating, bond
maturity less than three years, and each month in the sample, we find all bonds at the end of a given month
t that have this rating and maturity, and calculate the average actual credit spread sarmt. For each model,
we similarly calculate a time series of monthly average model credit spread sMrm1, ..., s

M
rmT . This figure shows

the time series of log credit spreads. The sample period is 2002:07–2018:03.
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Fig. 9 Stochastic volatility-jump model with stochastic debt For the issuer with most bonds in our sample,
Walmart, we estimate a model with stochastic asset volatility and jumps in asset value (SVJ), the stochastic
debt model (SD), and a model with stochastic asset volatility, jumps in asset value and stochastic debt
(SVJ-SD) by fitting to the year-end CDS premium curves in the years 2003, 2004, ..., 2017. The graph
shows the average actual CDS curves as well as the average model-implied yield curves for the years where
there are available CDS premiums at all maturities (2005, 2007–2009 and 2011–2017).
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Fig. 10 Stochastic volatility-jump model with stochastic debt For the issuer with most bonds in our sample,
Walmart, we estimate a model with stochastic asset volatility and jumps in asset value (SVJ), the stochastic
debt model (SD), and a model with stochastic asset volatility, jumps in asset value and stochastic debt
(SVJ-SD) by fitting to the year-end CDS premium curves in the years 2003, 2004, ..., 2017. The graph
shows the actual CDS curves as well as the model-implied yield curves.
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Fig. 11 Sharpe ratios in the stochastic debt model. The graph plots the asset and bond Sharpe ratios in
the stochastic debt model as a function of ρW2,M , the correlation between shocks to the market and the
component of shocks to debt uncorrelated with shocks to the asset value. The remaining parameters are set
to the estimated values, as explained in the text.
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Fig. 12 Credit spreads with jumps in debt. In the main analysis log-debt in the SD model is given as dkt =
λ(νQ−lt)dt+σkdWk,t, where lt is log-leverage. The figure shows log-credit spreads for this benchmark model

(‘Diffusion’) as well as the SD model where debt can also jump, dkt = λ(νQJD−lt)dt+σk,JDdWk,t+dJt, where
Jt is a jump process with jump intensity η and jumps are normally distributed with mean ξ and standard

deviation ζ (‘Diffusion+jumps’). In both cases the dynamics of assets are given by dvt = (r−δ− σ2

2 )dt+σdWt

where r = 0.05, δ = 0.05, σ = 0.24, and the recovery rate is 33.38%. For debt dynamics the mean reversion
parameter is λ = 0.1814 while σk = 0.2706 and νQ = −0.6593 in the diffusion case and νQ = −2.0017,
σk = 0.1353, η = 1, ξ = 0.2435, and ζ = 0.0880 in the jump-diffusion case. The default boundary is 0.7322
in the diffusion case and 0.675 in the jump-diffusion case.

77



Fig. A1 Future debt growth conditional on future three-year equity returns for different leverage ratios 1965-

1987. For firm i, year t, and horizons 1,...,20, we calculate log
(
Di,t+T
Di,t

)
where Di,t is the nominal level of

debt for firm i in year t and T is the horizon in years. For each firm-year in the sample where the initial
leverage ratio at time t of the firm is in a certain interval, we calculate the future three-year equity return
between t and t+3 and label firms with a return higher (lower) than the (within this leverage group) median
‘High (Low) future equity return’ firms. The figure shows the average log-ratio for high and low future equity
return firms. The dashed lines mark 95% confidence levels based on standard errors clustered at the firm
level. The data is from CRSP/Compustat and the sample period is 1965-1987.
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Fig. A2 Log ratio of future debt relative to current debt conditional on future equity returns for surviving
firms. In this figure we restrict the sample to 238 firms that have data in CRSP/Compustat every year
in the sample period 1988–2017 and have a leverage of at least 0.01 in all years. For firm i, year t, and

horizons 1,...,10, we calculate log
(
Di,t+T
Di,t

)
where Di,t is the nominal level of debt for firm i in year t and

T is the horizon in years. For each firm-year in the sample where the initial leverage ratio at time t of the
firm is in a certain interval, we calculate the future three-year equity return between t and t + 3 and label
firms with a return higher (lower) than the (within this leverage group) median ‘High (Low) future equity
return’ firms. The figure shows the average log-ratio for high and low future equity return firms. The dashed
lines mark 95% confidence levels based on standard errors clustered at the firm level. The data is from
CRSP/Compustat and the sample period is 1988–2017.
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Fig. A3 Log ratio of future debt relative to current debt conditional on future equity returns for firms with
same leverage, firm size, and cash holdings. For each year t we use the subsample of firms for which data
exists in year t and t+ 3. We sort these firms according to their firm size (market value of equity + nominal
value of debt) and pair the two largest firms, the third- and fourth-largest, etc. For each pair, we denote the
firm with the higher (lower) equity return between t and t+3 a ‘high equity return’ (‘low equity return’) firm

in year t. For firm i, year t, and horizons 1,...,10, we calculate log
(
Di,t+T
Di,t

)
where Di,t is the nominal level

of debt for firm i in year t and T is the horizon in years. The top figure show the average log-ratio for high
and low future equity return firms for horizons 1-10 years. In the middle figure firms are sorted into pairs
according to their leverage. In the lower figure firms are sorted according to their cash levels, measured as
cash divided by firm value. The dashed lines mark 95% confidence levels based on standard errors clustered
at the firm level. The data is from CRSP/Compustat and the sample period is 1988–2017.80



horizon (years) 1 2 3 4 5 6 7 8 9 10

Leverage 0-0.2
Data 0.21 0.42 0.61 0.78 0.92 1.05 1.16 1.27 1.36 1.44
BC-0G 0 0 0 0 0 0 0 0 0 0
BC 0.04 0.09 0.13 0.17 0.22 0.26 0.30 0.34 0.39 0.43
CDG 0.21 0.39 0.54 0.68 0.79 0.90 0.98 1.06 1.13 1.20
SD 0.22 0.40 0.56 0.70 0.81 0.92 1.01 1.08 1.15 1.21

Leverage 0.2-0.4
Data -0.01 0.01 0.04 0.07 0.12 0.17 0.21 0.26 0.30 0.37
BC-0G 0 0 0 0 0 0 0 0 0 0
BC 0.04 0.09 0.13 0.17 0.22 0.26 0.30 0.34 0.39 0.43
CDG 0.03 0.07 0.10 0.13 0.16 0.19 0.21 0.24 0.27 0.29
SD 0.04 0.07 0.10 0.13 0.16 0.19 0.22 0.24 0.27 0.30

Leverage 0.4-0.6
Data -0.05 -0.08 -0.09 -0.08 -0.06 -0.02 0.02 0.04 0.08 0.12
BC-0G 0 0 0 0 0 0 0 0 0 0
BC 0.04 0.09 0.13 0.17 0.22 0.26 0.30 0.34 0.39 0.43
CDG -0.05 -0.08 -0.11 -0.13 -0.14 -0.14 -0.15 -0.14 -0.14 -0.13
SD -0.05 -0.09 -0.11 -0.13 -0.14 -0.15 -0.15 -0.15 -0.14 -0.13

Leverage 0.6-0.8
Data -0.09 -0.15 -0.21 -0.22 -0.20 -0.20 -0.19 -0.14 -0.10 -0.06
BC-0G 0 0 0 0 0 0 0 0 0 0
BC 0.04 0.09 0.13 0.17 0.22 0.26 0.30 0.34 0.39 0.43
CDG -0.10 -0.18 -0.25 -0.30 -0.33 -0.36 -0.38 -0.40 -0.40 -0.41
SD -0.11 -0.19 -0.26 -0.31 -0.35 -0.37 -0.39 -0.41 -0.41 -0.41

Leverage 0.8-1
Data -0.18 -0.32 -0.42 -0.45 -0.45 -0.42 -0.35 -0.33 -0.28 -0.29
BC-0G 0 0 0 0 0 0 0 0 0 0
BC 0.04 0.09 0.13 0.17 0.22 0.26 0.30 0.34 0.39 0.43
CDG -0.14 -0.25 -0.35 -0.42 -0.48 -0.52 -0.56 -0.58 -0.60 -0.61
SD -0.15 -0.27 -0.36 -0.44 -0.50 -0.54 -0.57 -0.60 -0.61 -0.62

Table A1 Log ratio of future debt relative to current debt, model-fit. For firm i, year t, and horizons 1,...,10

years, we calculate log
(
Di,t+T
Di,t

)
where Di,t is the nominal level of debt for firm i in year t and T is the

horizon in years. ‘Data’ shows the average log-ratio for different initial leverage ratios and future horizons
in the data. The table also shows fitted values from structural models. ‘BC-0G’ refers to the Black-Cox
model with zero growth in debt. ‘BC’ refers to the Black-Cox model. ‘CDG’ refers to the Collin-Dufresne
and Goldstein (2001) model where all firms have a common long-run target leverage. ‘SD’ refers to a model
where the firm adjusts the level of debt such that a long-run leverage, common to all firms, is targeted, and
the level of debt is subject to random shocks. 81



horizon (years) 1 2 3 4 5 6 7 8 9 10

Leverage 0-0.2
Data -0.10 -0.09 0.01 0.16 0.28 0.36 0.43 0.44 0.41 0.42
BC-0G 0 0 0 0 0 0 0 0 0 0
BC 0 0 0 0 0 0 0 0 0 0
CDG 0.02 0.07 0.15 0.23 0.30 0.36 0.40 0.45 0.48 0.51
SD -0.02 -0.01 0.04 0.15 0.23 0.30 0.36 0.41 0.45 0.49

Leverage 0.2-0.4
Data -0.04 -0.03 0.05 0.19 0.30 0.37 0.45 0.52 0.53 0.58
BC-0G 0 0 0 0 0 0 0 0 0 0
BC 0 0 0 0 0 0 0 0 0 0
CDG 0.02 0.07 0.15 0.23 0.30 0.36 0.40 0.45 0.48 0.51
SD -0.02 -0.01 0.04 0.15 0.23 0.30 0.36 0.41 0.45 0.49

Leverage 0.4-0.6
Data -0.02 -0.00 0.06 0.21 0.31 0.39 0.44 0.52 0.56 0.57
BC-0G 0 0 0 0 0 0 0 0 0 0
BC 0 0 0 0 0 0 0 0 0 0
CDG 0.02 0.07 0.15 0.23 0.30 0.36 0.40 0.45 0.48 0.51
SD -0.02 -0.01 0.04 0.15 0.23 0.30 0.36 0.41 0.45 0.49

Leverage 0.6-0.8
Data -0.01 0.01 0.07 0.13 0.26 0.33 0.42 0.38 0.36 0.37
BC-0G 0 0 0 0 0 0 0 0 0 0
BC 0 0 0 0 0 0 0 0 0 0
CDG 0.02 0.07 0.15 0.23 0.30 0.36 0.40 0.45 0.48 0.51
SD -0.02 -0.01 0.04 0.15 0.23 0.30 0.36 0.41 0.45 0.49

Leverage 0.8-1
Data 0.02 0.04 0.06 0.22 0.31 0.43 0.50 0.58 0.71 0.74
BC-0G 0 0 0 0 0 0 0 0 0 0
BC 0 0 0 0 0 0 0 0 0 0
CDG 0.02 0.07 0.15 0.23 0.30 0.36 0.40 0.45 0.48 0.51
SD -0.02 -0.01 0.04 0.15 0.23 0.30 0.36 0.41 0.45 0.49

Table A2 Log ratio of future debt relative to current debt conditional on future equity returns, model-fit. For

firm i, year t, and horizons 1,...,10 years, we calculate log
(
Di,t+T
Di,t

)
where Di,t is the nominal level of debt

for firm i in year t and T is the horizon in years. For each firm-year in the sample where the initial leverage
ratio at time t of the firm is in a certain interval, we calculate the future three-year equity return between
t and t+ 3 and label firms with a return higher (lower) than the (within this leverage group) median ‘High
(Low) future equity return’ firms. The table shows the difference in log-ratio for high and low future equity
return firms. The table also shows fitted values from structural models. ‘BC-0G’ refers to the Black-Cox
model with zero growth in debt. ‘BC’ refers to the Black-Cox model. ‘CDG’ refers to the Collin-Dufresne
and Goldstein (2001) model where all firms have a common long-run target leverage. ‘SD’ refers to a model
where the firm adjusts the level of debt such that a long-run leverage, common to all firms, is targeted, and
the level of debt is subject to random shocks. The sample period is 1988–2017.
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Average Short Medium Long
All BC-0G 117 229 59 62

BC 117 234 55 61
CDG 170 285 95 129

CDG-FL 145 240 72 123
SD 102 187 61 58

SD-FL 105 193 57 66
Inv BC-0G 74 148 37 36

BC 81 145 33 63
CDG 111 195 65 73

CDG-FL 100 156 54 90
SD 69 120 40 46

SD-FL 66 127 35 37
Spec BC-0G 337 532 254 225

BC 333 558 255 185
CDG 430 623 325 343

CDG-FL 358 557 261 256
SD 328 461 251 273

SD-FL 315 466 257 222

Table A5 Pricing errors of monthly credit spreads when using Treasury yields as riskfree rates. For a
given rating r and maturity m, we find all bonds at the end of a given month t that have this rating and
maturity, calculate the average actual credit spread (in basis points) to the Treasury yield, sarmt, and do this
for all months in the sample. For each model, we likewise calculate a time series of the monthly average
model credit spread (in basis points) sMrm1, ..., s

M
rmT . The table shows the average absolute pricing error

1/T
∑T
t=1

∣∣∣sarmt − sMrmt∣∣∣. ‘Short’ includes bond maturities in the range 0-3 years, ‘Medium’ 3-10 years, and

‘Long’ 10-20 years. ‘BC-0G’ refers to the Black-Cox model with zero growth in debt. ‘BC’ refers to the
Black-Cox model. ‘CDG’ refers to the Collin-Dufresne and Goldstein (2001) model where all firms have a
common long-run target leverage. ‘SD’ refers to a model where the firm adjusts the level of debt such that a
long-run leverage, common to all firms, is targeted, and the level of debt is subject to random shocks. ‘FL’
refers to models where the long-run target leverage is firm specific and calculated as the historical average
firm leverage. ‘Inv’ includes bonds rated AAA, AA, A, and BBB, while ‘Spec’ includes bonds rated BB, B,
and C. The sample period for ‘Short’ is 2002:07-2018:03 while it is 1988:03-2018:03 for ‘Medium’ and ‘Long’.
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Average Short Medium Long
All BC-0G 91 151 55 67

BC 92 85 59 132
CDG 129 277 48 63

CDG-FL 88 168 47 50
SD 74 72 52 98

SD-FL 61 65 57 62
Inv BC-0G 76 113 33 82

BC 85 65 30 161
CDG 97 193 42 55

CDG-FL 62 124 38 25
SD 73 56 32 131

SD-FL 46 55 27 56
Spec BC-0G 192 258 171 147

BC 185 197 184 173
CDG 252 391 128 236

CDG-FL 206 289 157 170
SD 172 174 145 199

SD-FL 187 180 199 181

Table A6 Pricing errors of monthly CDS spreads. For a given rating r and maturity m, we find all CDS
spreads in a given month t that have this rating and maturity, calculate the average actual CDS spread
(in basis points), sarmt, and do this for all months in the sample. For each model, we likewise calculate a
time series of the monthly average model credit spread (in basis points) sMrm1, ..., s

M
rmT . This table shows

the average absolute pricing error 1/T
∑T
t=1

∣∣∣sarmt − sMrmt∣∣∣. ‘Short’ includes CDS maturities in the range

0-3 years, ‘Medium’ 3-10 years, and ‘Long’ 10-20 years. ‘BC-0G’ refers to the Black-Cox model with zero
growth in debt. ‘BC’ refers to the Black-Cox model. ‘CDG’ refers to the Collin-Dufresne and Goldstein
(2001) model where all firms have a common long-run target leverage. ‘SD’ refers to a model where the firm
adjusts the level of debt such that a long-run leverage, common to all firms, is targeted, and the level of debt
is subject to random shocks. ‘FL’ refers to models where the long-run target leverage is firm specific and
calculated as the historical average firm leverage. ‘Inv’ includes CDS observations of firm with rating AAA,
AA, A, and BBB, while ‘Spec’ includes CDS observations of firms with rating BB, B, and C. The sample
period for ‘Short’ is 2002:07-2018:03 while it is 2001:01-2018:03 for ‘Medium’ and ‘Long’.
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Average Short Medium Long
All BC-0G 83 151 36 62

BC 101 162 68 72
CDG 95 131 49 104

CDG-FL 99 114 59 123
SD 59 77 46 52

SD-FL 62 57 45 83
Inv BC-0G 67 131 36 33

BC 96 140 55 93
CDG 60 91 41 49

CDG-FL 79 88 50 100
SD 58 73 47 53

SD-FL 51 57 37 58
Spec BC-0G 190 238 146 185

BC 184 252 189 111
CDG 242 270 172 285

CDG-FL 212 249 168 219
SD 171 145 141 227

SD-FL 154 139 148 176

Table A7 Pricing errors of monthly credit spreads using market values. This table shows how well structural
models match average monthly credit spreads. For a given rating r and maturity m, we find all bonds at
the end of a given month t that have this rating and maturity, calculate the average actual credit spread (in
basis points) to the swap rate, sarmt, and do this for all months in the sample. For each model, we likewise
calculate a time series of monthly average model credit spread (in basis points) sMrm1, ..., s

M
rmT . This table

shows the average absolute pricing error 1/T
∑T
t=1

∣∣∣sarmt − sMrmt∣∣∣. ‘Short’ includes bond maturities in the

range 0-3 years, ‘Medium’ 3-10 years, and ‘Long’ 10-20 years. ‘BC-0G’ refers to the Black-Cox model with
zero growth in debt. ‘BC’ refers to the Black-Cox model. ‘CDG’ refers to the Collin-Dufresne and Goldstein
(2001) model where all firms have a common long-run target leverage. ‘SD’ refers to a model where the firm
adjusts the level of debt such that a long-run leverage, common to all firms, is targeted, and the level of
debt is subject to random shocks. ‘FL’ refers to models where the long-run target leverage is firm specific
and calculated as the historical average firm leverage. ‘Inv’ includes bonds rated AAA, AA, A, and BBB,
while ‘Spec’ includes bonds rated BB, B, and C. The sample period for ‘Short’ is 2002:07-2018:03 while it is
2000:01-2018:03 for ‘Medium’ and ‘Long’.
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