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Are standard structural models able to explain credit spreads on corporate bonds? In contrast
to much of the literature, we find that the Black-Cox model matches the level of investment-
grade spreads well. Model spreads for speculative-grade debt are too low, and we find that
bond illiquidity contributes to this underpricing. Our analysis makes use of a new approach
for calibrating the model to historical default rates that leads to more precise estimates of
investment-grade default probabilities. (JEL C23, G12, G13)
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The structural approach to credit risk, pioneered by Merton (1974) and others,
represents the leading theoretical framework for studying corporate default risk
and pricing corporate debt. While the models are intuitive and simple, many
studies find that, once calibrated to match historical default and recovery rates
and the equity premium, they fail to explain the level of actual investment-grade
credit spreads, a result referred to as the “credit spread puzzle.”
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Papers that find a credit spread puzzle typically use Moody’s historical default
rates, measured over a period of around 30 years and starting from 1970, as
an estimate of the expected default rate.1 Our starting point is to show that the
appearance of a credit spread puzzle strongly depends on the period over which
historical default rates are measured. For example, Chen, Collin-Dufresne, and
Goldstein (2009) use default rates from 1970 to 2001 and find BBB-AAA model
spreads of 57–79 basis points (bps) (depending on maturity), values that are
substantially lower than historical spreads of 94–102 bps. If, instead, we use
Moody’s default rates for 1920–2001, model spreads are 91–112 bps, a range
that is in line with historical spreads.

Using simulations, we demonstrate two key points about historical default
rates. The first is, over sample periods of around 30 years that are typically
used in the literature, there is a large sampling error in the observed average
rate. For example, if the true 10-year BBB cumulative default probability were
5.09%,2 a 95% confidence band for the realized default rate measured over
31 years would be [1.15%,12.78%]. Intuitively, the large sample error arises
because defaults are correlated and 31 years of data only give rise to three
nonoverlapping 10-year intervals. As a result of the large sampling error, when
historical default rates are used as estimates of ex ante default probabilities,
the difference between actual spreads and model spreads needs to be large—
much larger, for example, than that found for the BBB-AAA spread mentioned
above—to be interpreted as statistically significant evidence against the model.

Second, and equally crucial, distributions of average historical investment-
grade default rates are highly positively skewed. Most of the time we see
few defaults, but, occasionally, we see many defaults, meaning that there is
a high probability of observing a rate that is below the actual mean. Positive
skewness is likely to lead to the conclusion that a structural model underpredicts
investment-grade spreads even if the model is correct. The reason for the
presence of skewness is that defaults are correlated across firms as a result of the
common dependence of individual firm values on systematic (“market”) shocks.
To see why correlation leads to skewness, we can think of a large number of firms
with a default probability (over some period) of 5% and where their defaults
are perfectly correlated. In this case we will observe a zero default rate 95% of
the time (and a 100% default rate 5% of the time), and so the realized default
rate will underestimate the default probability 95% of the time. If the average
default rate is calculated over three independent periods, the realized default
rate will still underestimate the default probability 0.953 =85.74% of the time.

We propose a new approach to estimate default probabilities. Instead of
using the historical default rate at a single maturity and rating as an estimate
of the default probability for this same maturity and rating, we use a wide

1 See, for example, Leland (2006), Cremers, Driessen, and Maenhout (2008), Chen, Collin-Dufresne, and Goldstein
(2009), and Huang and Huang (2012).

2 This is the number reported by Moody’s for 1970–2001.
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cross-section of default rates at different maturities and ratings. We use the
Black and Cox (1976) model and what ties default probabilities for firms
with different ratings together in the model is that we assume that they will,
nonetheless, have the same default boundary. (The default boundary is the value
of the firm, measured as a fraction of the face value of debt, below which the
firm defaults.) This is reasonable since, if the firm were to default, there is no
obvious reason the default boundary would depend on the rating the firm had
held previously.

We show in simulations that our approach results in much more precise
and less skewed estimates of investment-grade default probabilities. For the
estimated 10-year BBB default probability, for example, the standard deviation
and skewness using the new approach are only 16% and 4%, respectively,
of those using the existing approach. The improved precision is partly the
result of the fact that we combine information across 20 maturities and 7
ratings and default probability estimates from different rating/maturity pairs are
imperfectly correlated. But, to a significant extent, it is the result of combining
default information on investment-grade and high-yield defaults. Because
defaults occur much more frequently in high-yield debt, these firms provide
more information on the location of the default boundary. Since the boundary
is common to investment-grade and high-yield debt, when we combine
investment-grade and high-yield default data, we “import” the information
on the location of the default boundary from high-yield to investment-grade
debt. The reduction in skewness is also the result of including default rates that
are significantly higher than those for BBB debt. While a low default rate for
investment-grade debt produces a positive skew in the distribution of defaults,
a default rate of 50% produces a symmetric distribution and, for even higher
default rates, the skew is actually negative.

We use our estimation approach and the Black-Cox model to investigate
spreads over the period 1987–2012. Our data set consists of 256,698 corporate
bond yield spreads to the swap rate of noncallable bonds issued by industrial
firms and is more extensive than those previously used in the literature. Our
implementation of the Black-Cox model is new to the literature in that it
allows for cross-sectional and time-series variation in firm leverage and payout
rate while matching historical default rates. Applying our proposed estimation
approach, we estimate the default boundary such that average model-implied
default probabilities match average historical default rates from 1920 to 2012.
In calibrating the default boundary we use a constant Sharpe ratio and match
the equity premium, but, once we have implied out the single firm-wide default
boundary parameter, we compute firm- and time-specific spreads using standard
“risk-neutral” pricing formulae.

We first explore the difference between average spreads in the Black-Cox
model and actual spreads. The average model spread across all investment-
grade bonds with a maturity between 3 and 20 years is 111 bps, whereas the
average actual spread is 92 bps. A confidence band for the model spread that
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takes into account uncertainty in default probabilities is [88 bps;128 bps]; thus
there is no statistical difference between actual and model investment spreads.
For speculative-grade bonds, the average model spread is 382 bps, whereas the
actual spread is 544 bps, and here the difference is statistically highly significant.
We also sort bonds by the actual spread and find that actual and model-implied
spreads are similar, except for bonds with a spread of more than 1,000 bps. For
example, for bonds with an actual spread between 100–150 bps the average
actual spread is 136 bps, whereas the average model-implied spread is 121 bps.
Importantly, the results are similar if we calibrate the model using default rates
from 1970 to 2012 rather than from 1920 to 2012, thus resolving the problem
described above that results in the earlier literature depend significantly on the
historical period chosen to benchmark the model.

To study the time series, we calculate average spreads on a monthly basis and
find that for investment-grade bonds there is a high correlation of 93% between
average actual spreads and model spreads. Note that the model-implied spreads
are “out-of-sample” predictions in the sense that actual spreads are not used
in the calibration. Furthermore, for a given firm only changes in leverage and
the payout rate—calculated using accounting data and equity values—lead to
changes in the firm’s credit spread. For speculative-grade bonds the correlation
is only 40%, showing that the model has a much harder time matching spreads
for low-quality firms.

Although average investment-grade spreads are captured well on a monthly
basis, the model does less well at the individual bond level. Regressing
individual investment-grade spreads on those implied by the Black-Cox model
gives an R2 of only 44%, so at the individual bond level less than half
the variation in investment-grade spreads is explained by the model. For
speculative-grade spreads the corresponding R2 is only 13%.

We also investigate the potential contribution of bond illiquidity to credit
spreads. We use bond age as the liquidity measure and double sort bonds on
liquidity and credit quality. For investment-grade bonds we find no relation
between bond liquidity and spreads, consistent with the ability of the model to
match actual spreads and the finding in Dick-Nielsen, Feldhütter, and Lando
(2012) that outside the 2007–2008 financial crisis illiquidity premiums in
investment-grade bonds were negligible. For speculative-grade bonds we find a
strong relation between bond liquidity and yield spreads, suggesting that bond
liquidity may explain much of the underpricing of speculative-grade bonds.

In this paper we use the Black and Cox (1976) model as a lens through
which to study the credit spread puzzle. The results in Huang and Huang (2012)
show that many structural models which appear very different in fact generate
similar spreads once the models are calibrated to the same default probabilities,
recovery rates, and the equity premium. The models tested in Huang and
Huang (2012) include features such as stochastic interest rates, endogenous
default, stationary leverage ratios, strategic default, time-varying asset risk
premiums, and jumps in the firm value process, yet all generate a similar level
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of credit spread. To the extent that different structural models produce similar
investment-grade default probabilities under our estimation approach, our
finding that the Black-Cox model matches average investment-grade spreads
is likely to hold for a wide range of structural models.

An extensive literature tests structural models. Leland (2006), Cremers,
Driessen, and Maenhout (2008), Chen, Collin-Dufresne, and Goldstein (2009),
Chen (2010), Huang and Huang (2012), Chen, Cui, He, and Milbradt (2017),
Bai (2016), Bhamra, Kuehn, and Strebulaev (2010), and Zhang, Zhou, and Zhu
(2009) use the historical default rate at a given rating and maturity to estimate
the default probability at that maturity and rating. We show that this test is
statistically weak. Eom, Helwege, and Huang (2004), Ericsson, Reneby, and
Wang (2015), and Bao (2009) allow for heterogeneity in firms and variation in
leverage ratios, but do not calibrate to historical default rates. Bhamra, Kuehn,
and Strebulaev (2010) observe that default rates are noisy estimators of default
probabilities, but do not propose a solution to this problem as we do.

1. A Motivating Example

There is a tradition in the credit risk literature of using Moody’s average realized
default rate for a given rating and maturity as a proxy for the corresponding
ex ante default probability. This section provides an example showing that the
apparent existence or nonexistence of a credit spread puzzle depends on the
particular period over which the historical default rate is measured. Later in
the paper we describe an alternative approach for extracting default probability
estimates from historical default rates that not only provides much greater
precision but is also less sensitive to the sample period chosen.

To understand how Moody’s calculates default frequencies, consider
the 10-year BBB cumulative default frequency of 5.09% used in Chen,
Collin-Dufresne, and Goldstein (2009).3 This number is published in Moody’s
(2002) and is based on default data for the period 1970–2001. For the year 1970,
Moody’s identifies a cohort of BBB-rated firms and then records how many of
these default over the next 10 years. The 10-year BBB default frequency for
1970 is the number of defaulted firms divided by the number in the 1970 cohort.
The average default rate of 5.09% is calculated as the average of the twenty-two
10-year default rates for the cohorts formed at yearly intervals over the period
1970–1991.

A large part of the literature has focused on the BBB-AAA spread at
4- and 10-year maturities. In our main empirical analysis (Section 3), we
study a much wider range of ratings and maturities but for now, to keep our
example simple, we also focus on the BBB-AAA spread. For a given sample
period we use the BBB and AAA average default rates for the 4- and 10-year

3 Moody’s reports a 10-year BBB default rate of 5.09% (Exhibit 32), and Chen, Collin-Dufresne, and Goldstein
(2009) use 4.89%. We use Moody’s reported number.
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horizons reported by Moody’s. Following the literature (e.g., Chen et al. 2009;
Huang and Huang 2012; and others) we first benchmark a model to match these
default rates, one at a time. Using the benchmarked parameters we then compute
risk-neutral default probabilities and, from these, credit spreads. Following
Eom, Helwege, and Huang (2004), Bao (2009), Huang and Huang (2012), and
others, we assume that if default occurs, investors receive (at maturity) a fraction
of the originally promised face value, but now with certainty. The credit spread,
s, is then calculated as

s =y−r =− 1

T
log[1−(1−R)πQ(T )], (1)

where R is the recovery rate, T is the bond maturity, and πQ(T ) is the risk-
neutral default probability. Throughout our analysis we employ the Black-Cox
model (Black and Cox 1976). Appendix A provides the model details.

We use our average parameter values for the period 1987–2012 estimated in
Section 3 and Chen, Collin-Dufresne, and Goldstein’s (2009) estimates of the
Sharpe ratio and recovery rate. We estimate the default boundary by matching
an observed default frequency. The default boundary is the value of the firm,
measured as a fraction of the face value of debt, below which the firm defaults.
Following Chen, Collin-Dufresne, and Goldstein (2009) and others, we carry
this out separately for each maturity and rating such that, conditional on the
other parameters, the model default probability matches the reported Moody’s
default frequency. For each maturity and rating we then use the benchmarked
default boundary and calculate the credit spread using Equation (1).

The solid bars in Figure 1 show estimates of the actual BBB-AAA corporate
bond credit spread from a number of papers. For both the 4- and 10-year
maturities, the estimated BBB-AAA spread is in the range of 98–109 bps with
the notable exception of Huang and Huang’s (2012) estimate of the 10-year
BBB-AAA of 131 bps. (Huang and Huang use both callable and noncallable
bonds in their estimate of the spread and this may explain why it is higher.)

Using Moody’s average default rates from the period 1970–2001, the 4-
and 10-year BBB-AAA spreads in the Black-Cox model are 52 and 72 bps,
respectively. These model estimates are substantially below actual spreads, a
finding that has been coined the “credit spread puzzle.”

Figure 1 also shows the model-implied spreads using Moody’s average
historical default rates from 1920 to 2002 (default rates from 1920 to 2001 are
not available). Using default rates from this longer period, the model-implied
spreads are substantially higher: the 4- and 10-year BBB-AAA spreads are 87
and 104 bps, respectively. Thus, when we use default rates from a longer time
period the puzzle largely disappears.

To emphasize that this conclusion is not specific to the Black-Cox model,
Figure 1 also shows the four spreads computed under the Merton model (and
using the parameters and method given in Chen et al. 2009). These spreads
are very similar to, and just a little higher than, the Black-Cox spreads. What
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Figure 1
Actual and model-implied BBB-AAA corporate bond yield spreads when using existing approach in the
literature
This figure shows actual and model-implied BBB-AAA spreads based on different estimates of actual and model-
implied spreads. The actual BBB-AAA yield spreads are estimates from Duffee (1998) (Duf), Huang and Huang
(2012) (HH), Chen, Collin-Dufresne, and Goldstein (2009) (CDG), and Cremers, Driessen, and Maenhout (2008)
(CDM). The solid lines show spreads in the Black-Cox model based on Moody’s default rates from the period
1920–2002 and 1970–2001, respectively. The dashed lines show spreads in the Merton model based on Moody’s
default rates from the period 1920–2002 and 1970–2001, respectively.

remains unchanged is the finding that the appearance of a credit spread puzzle
depends on the sample period.

In the example we compare corporate bond yields relative to AAA yields to
be consistent with CDG and others. In our later analysis we use bond yields
relative to swap rates. The average difference between swap rates and AAA
yields is small: over our sample period 1987–2012, the average 5- and 10-year
AAA-swap spreads are 4 and 6 bps, respectively. We use swap rates in our
later analysis, because the term structure of swap rates is readily available on a
daily basis. There are very few AAA-rated bonds in the later part of our sample
period, so we would not be able to calculate a AAA yield at different maturities.
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In summary, realized average default rates vary substantially over time, and,
as a result, when these are taken as ex ante default probabilities the historical
period over which they are measured has a strong influence on whether or not
there will appear to be a credit spread puzzle. In the next section we first explore
the statistical uncertainty of historical default rates in more detail and then
propose a different approach to estimating default probabilities that exploits
the information contained in historical default rates more efficiently than has
been the case in the literature so far.

2. Estimating Ex Ante Default Probabilities

The existing literature on the credit spread puzzle and, more broadly, the
literature on credit risk typically uses the average ex post historical default rate
for a single maturity and rating as an estimate of the ex ante default probability
for this same maturity and rating.4 We find that the statistical uncertainty
associated with these estimates is large and propose a new approach that uses
historical default rates for all maturities and ratings simultaneously to extract
the ex ante default probability for any given maturity and rating. Simulations
show that our approach greatly reduces statistical uncertainty.

2.1 Existing approach: Extracting the ex ante default probability from a
single ex post default frequency

An ex post realized default frequency may be an unreliable estimate of the ex
ante default probability for two significant reasons.

The first is that the low level of default frequency, particularly for investment-
grade firms, leads to a sample size problem with default histories as short as
those typically used in the literature when testing standard models. The second
is that, even though the problem of sample size is potentially mitigated by the
presence of a large number of firms in the cross-section, defaults are correlated
across firms and so the benefit of a large cross-section in improving precision
is greatly reduced.

How severe are these statistical issues? We address this question in a
simulation study and base our simulation parameters on the average 10-year
BBB default rate of 5.09% over 1970–2001 used in Chen, Collin-Dufresne,
and Goldstein (2009). In an economy in which the ex ante 10-year default
probability is 5.09% for all firms, we simulate the ex post realized 10-year
default frequency over 31 years. We assume that in year 1 we have 445 identical
firms, equal to the average number of firms in Moody’s BBB cohorts over the

4 Examples include Chen, Cui, He, and Milbradt (2017), Gomes, Jermann, and Schmid (2016), Christoffersen and
Elkamhi (2017), Bai (2016), Zhang, Zhou, and Zhu (2009), Chen (2010), Leland (2006), Cremers, Driessen,
and Maenhout (2008), Chen, Collin-Dufresne, and Goldstein (2009), Chen (2010), Huang and Huang (2012),
Campello, Chen, and Zhang (2008), and McQuade (2013).
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period 1970–2001. In the Black-Cox (and Merton) model firm i’s asset value
under the natural measure follows a GBM:

dVit

Vit

=(μ−δ)dt +σdWP
it , (2)

where μ is the drift of firm value before payout of the dividend yield δ and σ

is the volatility of firm value. Like in Section 1, we use our average parameter
values for the period 1987–2012 estimated in Section 3: μ=10.05%, δ =4.72%,
and σ =24.6%. We introduce systematic risk by assuming that

WP
it =

√
ρWst +

√
1−ρWit , (3)

where Wi is a Wiener process specific to firm i, Ws is a Wiener process common
to all firms, and ρ is the pairwise correlation between percentage changes in
firm value. All the Wiener processes are independent. The firm defaults the first
time asset value hits a boundary equal to a fraction d of the face value of debt
F , that is, the first time Vτ ≤dF . The realized 10-year default frequency in
the year 1 cohort is found by simulating one systematic and 445 idiosyncratic
processes in Equation (3).

In year 2 we form a cohort of 445 new firms. The firms in year 2 have
characteristics that are identical to those of the year 1 cohort at the time of
formation. We calculate the realized 10-year default frequency of the year 2
cohort as we did for the year 1 cohort. Crucially, the common shock for years 1–
9 for the year 2 cohort is the same as the common shock for years 2–10 for firms
in the year 1 cohort. We repeat the same process for 22 years and calculate the
overall average realized cumulative 10-year default frequency in the economy
by taking an average of the default frequencies across the 22 cohorts. Finally,
we repeat this entire simulation 25,000 times.

To estimate the correlation parameter ρ, we calculate pairwise equity
correlations for rated industrial firms in the period 1987–2012. Specifically,
for each year we calculate the average pairwise correlation of daily equity
returns for all industrial firms for which Standard & Poor’s provide a rating
and then calculate the average of the 26 yearly estimates over 1987–2012. We
estimate ρ to be 20.02%.

To set the default boundary, we proceed as follows. First, without loss of
generality, we assume that the initial asset value of each firm is equal to one.
This means that the firm’s leverage, L≡ F

V
=F , and we set the default boundary

dF (=dL) such that the model-implied default probability given in Equation
(A2) in the appendix matches the 10-year default rate of 5.09%.5

Panel A of Figure 2 shows the distribution of the realized average 10-year
default rate in the simulation study and the black vertical line shows the ex

5 We simulate firm values on a weekly basis. There is a small downward bias in default rates because a default
only occurs on a weekly basis and not continuously, and we adjust for this bias by multiplying average default
rates in each of the 25,000 simulations with 5.09% divided by the average of the 25,000 average 10-year BBB
default rates.
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Figure 2
Distribution of estimated 10-year BBB default probability when using default rates measured over 31 years
The existing approach in the literature is to use an average historical default rate for a specific rating and maturity
as an estimate for the default probability when testing spread predictions of structural models. One example is
Chen, Collin-Dufresne, and Goldstein (2009), who use the 10-year BBB default rate of 5.09% realized over the
period 1970-2001 as an estimate for the 10-year BBB default probability. Panel A shows the distribution of the
10-year BBB default probability when using a 31-year history of the 10-year BBB default rate as an estimate.
Besides this distribution, panel B also shows the distribution of the estimated 10-year BBB default probability
when extracted using the proposed approach in Section 2.2. Specifically, the default probability is estimated
using the Black-Cox model and 1-, 2-, . . ., 20-year default rates for ratings AAA, ..., C averaged over 31 years.

ante default probability of 5.09%. The 95% confidence interval for the realized
average default rate is wide at [1.15%; 12.78%]. We also see that the default
frequency is significantly skewed to the right; that is, the modal value of around
3% is significantly below the mean of 5.09%. This means that the default
frequency most often observed—for example, the estimate from the rating
agencies—is below the mean. Specifically, although the true 10-year default
probability is 5.09%, the probability that the observed average 10-year default
rate over 31 years is half that level or less is 19.9%. This skewness means
that the number reported by Moody’s (5.09%) is more likely to be below the
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Table 1
Distribution of average 10-year BBB default rate when measured over 31 years for different levels of
systematic risk (ρ): the pairwise correlation between firms’ asset values

Systematic risk
Quantiles

ρ Mean 0.01 0.025 0.25 0.5 0.75 0.975 0.99

0% 5.09% 4.57% 4.66% 4.94% 5.09% 5.24% 5.53% 5.62%
5% 5.09% 2.45% 2.74% 4.06% 4.93% 5.93% 8.38% 9.19%
10% 5.09% 1.69% 2.00% 3.58% 4.75% 6.22% 10.13% 11.48%
15% 5.09% 1.17% 1.49% 3.20% 4.60% 6.45% 11.41% 13.28%
20% 5.09% 0.87% 1.16% 2.86% 4.39% 6.60% 12.88% 15.20%
25% 5.09% 0.64% 0.90% 2.60% 4.23% 6.63% 14.16% 17.14%
30% 5.09% 0.44% 0.64% 2.24% 4.04% 6.80% 15.71% 18.83%
35% 5.09% 0.31% 0.48% 2.00% 3.79% 6.79% 16.88% 21.08%
40% 5.09% 0.18% 0.33% 1.73% 3.58% 6.83% 18.56% 22.82%
45% 5.09% 0.12% 0.23% 1.46% 3.32% 6.87% 19.95% 25.00%
50% 5.09% 0.08% 0.16% 1.28% 3.12% 6.86% 20.79% 25.90%

In the benchmark simulations we use an estimated value of ρ of 20.02% and simulate an average 10-year BBB
default rate (based on 31 years of 10-year BBB default rates). We repeat this simulation 25,000 times and
calculate the distribution of the average 10-year BBB rate. This table shows the distribution for different levels
of systematic risk.

true mean than above it and, in this case, if spreads reflect the true expected
default probability, they will appear too high relative to the observed historical
loss rate.

There is a tradition in the literature for matching the historical 10-year
BBB default rate exactly by backing out one or several model parameters
(see footnote 4 for references). In this tradition, the model-implied default
probability will inherit one-to-one the statistical uncertainty of the historical
default rate. Since the statistical uncertainty of the historical default rate is
large, the statistical uncertainty of other important model predictions, such as
the predicted spread, will likewise be large.

Given that we simulate 9,345 firms over a period of 31 years, it might be
surprising that the realized default rate can be far from the ex ante default
probability. The reason is simply the presence of systematic risk in the economy
which induces correlation in defaults across firms. Table 1 shows the results
of the simulation described above for different levels of systematic risk (ρ).
With zero systematic risk (first row of the table) the distribution of the 10-year
default rate is naturally tightly centered on the true mean with a 95% confidence
interval of [4.66%, 5.53%]. However, the dispersion in realized default rates
increases substantially, even with modest levels of systematic risk. When ρ is
10%, for example, half our estimated value of 20.02%, the 95% confidence
interval becomes [2.00%, 10.13%], which is 70% as wide as when ρ =20.02%.
For higher values of ρ, the confidence interval is wider still.

Moody’s now publish default rates starting from 1920 and, other things
equal, a longer time period over which average default rates are measured
will lead to improved statistical precision. However, even if the average default
rate is measured over 92 years there remains significant statistical uncertainty
when estimates of the default probability are based on a single rating and
maturity. Keeping the default probability fixed at 5.09% (and with ρ =20.02%)
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and increasing the simulated time period from 31 to 92 years, leads to a 95%
confidence interval of [2.47%; 8.95%]. Thus, even with 92 years of default data,
there is still significant uncertainty regarding the true ex ante default probability.

2.2 A new approach: Extracting the ex ante default probability from a
cross-section of ex post default frequencies

We now describe a method for estimating default probabilities that uses realized
cumulative default rates from a wide range of ratings and maturities. The key
feature of our method that allows us to aggregate default rate information across
ratings and maturities is the assumption that firms with different ratings and
having bonds with different maturities will nonetheless share a common default
boundary.

The statistical benefits of the new approach derive from two main sources.
First, because low credit quality bonds default more frequently, they provide
much more information on the location of the default boundary than high credit
quality bonds, and we can therefore obtain better estimates of the default
probability on the latter when we also include default rate information on
the former. Second, estimates of the default boundary obtained from different
maturity-rating pairs are imperfectly correlated, and it is therefore efficient to
combine them. Both these effects lead to better precision in estimated default
probabilities than is obtained from a single default rate.

Our approach is a generalization of the method used by Chen,
Collin-Dufresne, and Goldstein (2009), who find the default boundary
parameter d such that the model-implied BBB default probability matches the
average historical 10-year BBB default rate. Given estimates of �P =(μ,σ,δ)
and the leverage for BBB-rated firms, LBBB , this approach amounts to finding
d such that the model-implied default probability πP (dLBBB,�P ,10) (given
in Equation (A2) in the appendix) is equal to the historical 10-year BBB default
rate. In other words, they find d as

min{d}

∣∣∣πP (dLBBB,�P ,10)−π̂P
BBB,10

∣∣∣, (4)

and since they only match one historical default rate, the error in the objective
function in expression (4) is zero. Chen, Collin-Dufresne, and Goldstein (2009)
then use this default boundary to calculate the 10-year BBB spread according
to Equation (1).

Our approach is similar but, crucially, we fit to the historical default rates on
all available ratings and maturities. We estimate the default boundary parameter
d by minimising the sum of absolute deviations between annualized model-
implied and historical default rates:

min{d}

C∑
a=AAA

20∑
T =1

1

T

∣∣∣πP (dLa,�
P ,T )−π̂P

aT

∣∣∣, (5)

where π̂P
aT is the historical cumulative default rate for rating a and maturity T .

Since we fit to a range of historical default rates, each individual default rate
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is fitted with error.6 If we restrict the objective function in (5) to include only
the 10-year BBB default rate, then our approach is identical to that of Chen,
Collin-Dufresne, and Goldstein (2009).

We assume in expression (5) that the default boundary parameter d is
homogeneous across firms. This is a standard assumption in the literature and
the majority of the models considered in Eom, Helwege, and Huang (2004)
and Huang and Huang (2012) are estimated under this assumption. Structural
models with endogenous default such as the Leland (1994) model have a
default boundary that depends on a number of parameters and it would be
straightforward to allow for this in the objective function given in Equation (5).

How do the results from using the proposed criterion in expression (5)
compare with those from using (4)? We answer this question by simulating
cumulative default rates and then, for each drawing, estimating d and computing
the 10-year BBB default probability.

Using the objective function given in (4) the realized 10-year default rate
is fitted without error and so in this case the distribution of the estimated ex
ante 10-year BBB default probability is simply the distribution of the realized
default rate given in panel A of Figure 2.

In the case of the objective function given in (5) we proceed as follows.
Following the procedure described in the previous section, we simulate over
a period of 31 years but now for each of the seven major rating categories.
We assume that all firms, regardless of rating, have the same parameters σ ,
δ, and μ, the same correlation structure (given in Equation (3)) and the same
correlation parameter, ρ.

We assume the default boundary to be d =1 and the leverage for each rating
category is set, like in the previous section, such that the historical 10-year
cumulative default rate is matched.7 Since d is common across all firms,
it means that firms in different rating categories differ only in their initial
leverage. We then simulate 1-, . . ., 20-year default rates. We set the number
of firms in each rating cohort equal to the average number of firms in the
Moody’s cohorts for that rating category in the period 1970–2001. We carry
out this simulation 25,000 times and for each simulation we first estimate d

according to expression (5) and then calculate the 10-year BBB cumulative
default probability in Equation (A2).

Panel B of Figure 2 shows the distribution of the 10-year BBB estimated
default probability under the objective function given in Equation (5) and, for
comparison, the distribution obtained using the criterion in expression (4) and
already given in panel A. We emphasize that, although each estimate of d in the
first case (panel A) results in an estimate of the 10-year BBB default probability

6 There may be weighting patterns other than 1
T

that are even more efficient, but, in making this choice, our
objective has been to keep our method as simple and transparent as possible.

7 Since the default boundary d and leverage L only enter the default probability as a product, any value of d gives
rise to the same simulation results because leverage adjusts.
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that matches the realized default rate exactly, the default probabilities in both
distributions are consistent with the Black-Cox formula (A2), and the difference
in the distributions solely arises from the application of either the fitting criterion
(4) (panel A) or the new method (5) (panel B) in estimating the default boundary
from the same set of realized default rates.

We see that the distribution is both much tighter and less skewed than when
the estimate is solely based on the 10-year BBB default rate. As we show next,
the distribution is tighter because we use default rates from all maturities and
ratings, in particular from low ratings, instead of just one. The skewness is
reduced because we include default rates in the estimation that are significantly
higher than BBB default rates. To see why this is the case, consider the example
discussed earlier of a large number of firms with a default probability of 5%
and where their defaults are perfectly correlated. In this case we will see no
defaults 95% of the time and the realized default rate will underestimate the
default probability 95% of the time and the distribution will exhibit positive
skewness. By the same logic, a higher default probability reduces the skewness
and for default probabilities greater than 50% the skewness is in fact negative.

Table 2 provides summary statistics—standard deviation, skewness, and
quantiles at 2.5%, 50%, and 97.5%—on the distribution of the estimated 10-
year BBB default probability derived from the simulations described above.
Results are given for a number of cases in which different subsets of ratings
and maturities are used in the estimation.

Panel A of Table 2 gives results for the value of systematic risk estimated from
the data (ρ =0.2002). The first row in this panel gives results for the case that
includes all ratings and maturities and corresponds to our implementation of this
method using actual firm and default rate data (described in the next section).
The second row corresponds to the previous literature that estimates the default
boundary from a single average 10-year BBB default rate. The difference
between the two distributions is striking: using all ratings and maturities leads
to a standard deviation that is around 84% lower and has almost no skewness
(compared with a skewness of 1.28 using a single BBB default rate).

What is responsible for this improvement? By searching for a parameter, d,
that is common to all ratings our approach allows us to aggregate information
across ratings and maturities. As suggested earlier, the inclusion of default data
on high-yield debt is particularly productive and row 3 shows the benefit from
including the 10-year default rate from each of the seven ratings rather than
just one. Relative to estimates derived from the 10-year BBB default rate alone
(row 2), this step alone almost halves the standard deviation and substantially
reduces the skewness. Including all (105) ratings for maturities longer than
5 years (row 4) further reduces both the standard deviation and skewness but
including only default rates for longer maturities (longer than 10 years, row 5) is
counterproductive. Further simulation experiments suggest that this is because
long-maturity default rates for highly rated debt have both high dispersion and
high skewness.
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Table 2
Properties of the 10-year BBB default probability estimator when using a subset of realized default rates
in the estimation

Quantiles

SD Skewness 0.025 0.5 0.975

A. Systematic risk ρ =0.2002

All ratings, all maturities (140 default rates) 0.48 −0.05 3.96% 4.92% 5.88%
10-year BBB (1 default rate) 3.05 1.28 1.15% 4.40% 12.78%
All ratings, 10-year (7 default rates) 1.65 0.55 2.45% 5.03% 8.77%
All ratings, maturity >5 years (105 default rates) 1.22 0.43 3.02% 5.03% 7.70%
All ratings, maturity >10 years (70 default rates) 2.01 0.82 2.15% 5.06% 10.07%
Investment grade, all maturities (80 default rates) 3.77 1.21 0.45% 4.33% 14.70%
Investment grade, maturity ≤10 years (40 default rates) 2.39 0.95 1.45% 4.62% 10.63%
Increased number of 10-year BBB observations 2.66 1.17 1.41% 4.53% 11.69%

B. Systematic risk ρ =0.1

All ratings, all maturities (140 default rates) 0.35 0.16 4.46% 5.07% 5.79%
10-year BBB (1 default rate) 2.07 1.03 2.04% 4.74% 9.97%
All ratings, 10-year (7 default rates) 1.22 0.45 3.33% 5.36% 8.12%
All ratings, maturity >5 years (105 default rates) 0.92 0.31 3.76% 5.35% 7.31%
All ratings, maturity >10 years (70 default rates) 1.49 0.67 3.13% 5.46% 8.98%
Investment grade, all maturities (80 default rates) 2.74 0.92 1.37% 4.95% 11.93%
Investment grade, maturity ≤10 years (40 default rates) 1.67 0.68 2.45% 4.95% 8.98%
Increased number of 10-year BBB observations 1.76 0.82 2.36% 4.84% 9.19%

C. Systematic risk ρ =0.3

All ratings, all maturities (140 default rates) 0.59 −0.01 3.90% 5.06% 6.26%
10-year BBB (1 default rate) 3.98 1.77 0.66% 4.00% 15.51%
All ratings, 10-year (7 default rates) 2.16 0.70 2.15% 5.31% 10.52%
All ratings, maturity >5 years (105 default rates) 1.60 0.51 2.79% 5.30% 8.77%
All ratings, maturity >10 years (70 default rates) 2.72 0.99 1.87% 5.41% 12.41%
Investment grade, all maturities (80 default rates) 4.72 1.47 0.16% 3.82% 17.44%
Investment grade, maturity ≤10 years (40 default rates) 3.07 1.25 0.80% 4.24% 12.41%
Increased number of 10-year BBB observations 3.40 1.55 0.98% 4.28% 13.65%

This table shows the properties of the estimated 10-year BBB default probability (as a percentage) when the
estimate is based on average historical default rates over 31 years. The table is based on 25,000 simulations of
average default rates over 31 years. ‘All ratings, all maturities’ refers to the method proposed in Section 2.2,
where the default probability estimate for a single rating and maturity is extracted using the Black-Cox model
and 1-, 2-, ..., 20-year default rates for ratings AAA, AA, A, BBB, BB, B, and C. ‘10-year BBB’ refers to the
standard approach in the literature of using the historical average 10-year BBB default rate as an estimate of the
ex ante 10-year BBB default probability. ’increased number of 10-year BBB observations’ refers to using only
the 10-year BBB default rate as an estimator of the 10-year default probability, but increasing the number of
BBB firms in each cohort to 40,660 instead of 445 like in the benchmark case. In the remaining cases some, but
not all, default rates are used when estimating the 10-year BBB default probability.

These characteristics of long-maturity default rates for high ratings emerge
strongly if we restrict the default data used to estimate d to investment-grade
debt. Row 6 shows that using investment-grade default rates for all maturities
actually leads to lower precision than using only the 10-year BBB default rate,
while row 7 shows that this problem disappears when we include investment-
grade default rates for maturities of up to 10 years but exclude those for longer
maturities.

In the simulations the number of firms in each rating bucket is the average
number in Moody’s cohort over the period 1970–2001. The distribution of the
number of firms across ratings and over time will also influence the results but
this effect does not appear to be very strong. The average number of firms in
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the BBB bucket, for example, is 445. Row 8 in panel A of Table 2 asks the
question of how much the estimate of the default rate would be improved if the
number of firms in the BBB rating bucket each year were equal to the 40,660
(the average number of firms in Moody’s cohorts across all ratings in any 1
year—2033—multiplied by 20, the number of horizons). As the results show,
increasing the number of firms in the BBB cohort by over 90 times results in
only a modest reduction in the standard deviation: 2.66 versus 3.08.

Panels B and C of Table 2 report the corresponding results for values of ρ

of 0.1 and 0.3. The results have much the same character in both cases. When
ρ =0.1 the standard deviation in each case is about 30% lower and with ρ =0.3
about 30% higher. The rank order of the eight results is the same for all three
values of ρ.

The results in Table 2 show that, compared with previous methods, the
improvement in the precision of the estimated default probability comes from
the use of default rates from a range of ratings and maturities and, specifically,
the use of default rates on high-yield debt. As mentioned earlier, the results
also suggest that refinement of the weighting scheme in Equation (5) might
lead to even lower standard errors. However, the assumption of equal weights
in our approach scheme is both simple and transparent (and, quite possibly,
more robust than weights that are “optimized” in the context of a particular
model).

Tables 3 and 4 give further details on the performance of our method. Table 3
compares the standard deviation of the estimated default probabilities in the
existing approach and our approach for all the ratings and maturities we study in
the next section. Our approach results in a substantial reduction in the standard
deviation, except for the shortest maturities of the lowest ratings. Table 4 shows
that for investment-grade ratings, our approach also results in a substantial
reduction in the skewness.

Overall, our proposed method greatly reduces both the standard deviation
and skewness of estimated investment-grade default probabilities.8

3. A New Perspective on the Credit Spread Puzzle

In the previous section we proposed a new method to estimate default
probabilities by combining information on historical default rates from the
cross-section of rating categories and maturities and showed that, compared to
the existing approach of using a single default rate, it greatly improves statistical
precision. In this section we apply our method to a large data set of bond quotes
over 1987–2012 to shed new light on the credit spread puzzle.

8 In our simulations we match Moody’s historical 10-year default rates over 1970–2001 for ratings AAA, . . ., C.
In the Internet Appendix we show that the distribution of the default boundary parameter d—and therefore also
the distribution of the default probability—is similar if we match Moody’s default rates at maturities other than
10 years.
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Table 3
Standard deviation of the estimated default probability

Horizon (years) 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

AAA

New method 0.00 0.01 0.02 0.03 0.05 0.07 0.09 0.11 0.14 0.16 0.18 0.20 0.22 0.24 0.26 0.28 0.29
Existing method 0.02 0.05 0.11 0.21 0.34 0.52 0.72 0.95 1.20 1.46 1.73 2.00 2.27 2.54 2.79 3.03 3.27
Ratio 10% 14% 15% 15% 14% 13% 13% 12% 11% 11% 10% 10% 10% 10% 9% 9% 9%

AA

New method 0.00 0.01 0.02 0.04 0.06 0.08 0.10 0.13 0.15 0.17 0.20 0.22 0.24 0.26 0.28 0.29 0.31
Existing method 0.01 0.05 0.11 0.22 0.37 0.56 0.78 1.03 1.29 1.56 1.85 2.13 2.41 2.68 2.94 3.19 3.44
Ratio 17% 18% 17% 16% 15% 14% 13% 12% 12% 11% 11% 10% 10% 10% 9% 9% 9%

A

New method 0.01 0.02 0.04 0.07 0.10 0.14 0.17 0.20 0.23 0.26 0.29 0.32 0.34 0.36 0.38 0.40 0.42
Existing method 0.03 0.10 0.22 0.40 0.64 0.91 1.23 1.57 1.91 2.26 2.62 2.97 3.30 3.63 3.94 4.23 4.51
Ratio 24% 22% 20% 18% 16% 15% 14% 13% 12% 12% 11% 11% 10% 10% 10% 9% 9%

BBB

New method 0.08 0.15 0.22 0.29 0.36 0.42 0.48 0.52 0.57 0.60 0.64 0.67 0.69 0.71 0.73 0.75 0.77
Existing method 0.24 0.53 0.93 1.40 1.92 2.47 3.05 3.63 4.19 4.72 5.25 5.76 6.22 6.66 7.06 7.44 7.78
Ratio 32% 27% 24% 21% 19% 17% 16% 14% 14% 13% 12% 12% 11% 11% 10% 10% 10%

BB

New method 0.98 1.17 1.31 1.40 1.47 1.52 1.55 1.58 1.59 1.60 1.61 1.61 1.62 1.62 1.61 1.61 1.61
Existing method 2.27 3.28 4.23 5.15 6.02 6.84 7.64 8.38 9.09 9.76 10.40 10.99 11.55 12.06 12.53 12.94 13.32
Ratio 43% 36% 31% 27% 24% 22% 20% 19% 18% 16% 15% 15% 14% 13% 13% 12% 12%

B

New method 3.11 3.09 3.05 2.99 2.93 2.87 2.82 2.77 2.72 2.68 2.64 2.60 2.56 2.53 2.50 2.47 2.44
Existing method 5.35 6.27 7.06 7.77 8.41 9.01 9.55 10.06 10.55 11.02 11.47 11.89 12.28 12.65 12.98 13.30 13.59
Ratio 58% 49% 43% 38% 35% 32% 30% 28% 26% 24% 23% 22% 21% 20% 19% 19% 18%

C

New method 5.21 4.84 4.56 4.33 4.15 4.00 3.87 3.75 3.65 3.57 3.49 3.42 3.35 3.30 3.24 3.19 3.15
Existing method 5.15 5.45 5.72 5.98 6.23 6.45 6.67 6.87 7.09 7.29 7.49 7.68 7.86 8.03 8.19 8.36 8.50
Ratio 101% 89% 80% 72% 67% 62% 58% 55% 52% 49% 47% 44% 43% 41% 40% 38% 37%

This table shows the standard deviation of the estimated default probability (as a percentage) when the estimate is based on average historical default rates over 31 years. The
table is based on 25,000 simulations of average default rates over 31 years. ‘Existing method’ refers to the standard approach in the literature of using the average historical
default rate for a single rating and maturity as an estimate of the ex ante default probability. ‘New method’ refers to the method proposed in Section 2.2 where the default
probability estimate for a single rating and maturity is extracted using the Black-Cox model and 1-, 2-, ..., 20-year default rates for ratings AAA, AA, A, BBB, BB, B, and C.
‘Ratio’ is the standard deviation of default probability estimates using the new method divided by the standard deviation of default probability estimates using the existing method.
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Table 4
Skewness of the estimated default probability

Horizon (years) 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

AAA

New method 0.51 0.36 0.25 0.18 0.12 0.07 0.04 0.01 −0.02 −0.04 −0.06 −0.07 −0.09 −0.10 −0.11 −0.12 −0.13
Existing method 3.57 2.87 2.56 2.35 2.23 2.05 1.90 1.76 1.63 1.51 1.40 1.30 1.21 1.13 1.05 1.00 0.94
Ratio 14% 12% 10% 8% 5% 4% 2% 0% −1% −3% −4% −6% −7% −9% −10% −12% −14%

AA

New method 0.50 0.35 0.24 0.17 0.11 0.07 0.03 0.00 −0.02 −0.04 −0.06 −0.08 −0.09 −0.10 −0.11 −0.12 −0.13
Existing method 3.35 3.04 2.69 2.44 2.23 2.06 1.91 1.77 1.63 1.51 1.39 1.29 1.21 1.12 1.05 1.00 0.94
Ratio 15% 11% 9% 7% 5% 3% 2% 0% −1% −3% −4% −6% −7% −9% −11% −12% −14%

A

New method 0.44 0.30 0.20 0.13 0.08 0.04 0.01 −0.02 −0.04 −0.06 −0.08 −0.09 −0.11 −0.12 −0.13 −0.14 −0.14
Existing method 2.89 2.56 2.36 2.17 2.00 1.87 1.73 1.60 1.49 1.38 1.28 1.19 1.11 1.04 0.98 0.92 0.87
Ratio 15% 12% 9% 6% 4% 2% 0% −1% −3% −5% −6% −8% −10% −11% −13% −15% −17%

BBB

New method 0.29 0.18 0.10 0.05 0.01 −0.03 −0.05 −0.08 −0.09 −0.11 −0.12 −0.13 −0.14 −0.15 −0.16 −0.17 −0.17
Existing method 1.75 1.63 1.54 1.48 1.40 1.34 1.28 1.21 1.15 1.09 1.02 0.95 0.90 0.84 0.79 0.74 0.69
Ratio 17% 11% 7% 3% 0% −2% −4% −6% −8% −10% −12% −14% −16% −18% −20% −23% −25%

BB

New method 0.08 0.00 −0.05 −0.08 −0.11 −0.13 −0.14 −0.16 −0.17 −0.18 −0.19 −0.19 −0.20 −0.20 −0.21 −0.21 −0.22
Existing method 0.73 0.69 0.66 0.64 0.63 0.63 0.62 0.61 0.60 0.58 0.57 0.55 0.53 0.50 0.47 0.44 0.41
Ratio 10% 0% −7% −13% −17% −20% −23% −26% −28% −30% −33% −35% −38% −41% −44% −48% −53%

B

New method −0.08 −0.12 −0.15 −0.17 −0.19 −0.20 −0.21 −0.21 −0.22 −0.22 −0.23 −0.23 −0.24 −0.24 −0.24 −0.24 −0.24
Existing method 0.24 0.21 0.19 0.17 0.16 0.15 0.14 0.13 0.12 0.10 0.09 0.08 0.07 0.06 0.04 0.02 −0.00
Ratio −35% −60% −79% −99% −115% −132% −149% −170% −189% −215% −241% −278% −330% −404% −605% −1301% 28766%

C

New method −0.20 −0.21 −0.23 −0.23 −0.24 −0.24 −0.25 −0.25 −0.25 −0.25 −0.26 −0.26 −0.26 −0.26 −0.26 −0.26 −0.26
Existing method −0.10 −0.13 −0.16 −0.18 −0.21 −0.22 −0.24 −0.26 −0.28 −0.30 −0.32 −0.34 −0.36 −0.38 −0.41 −0.44 −0.47
Ratio 195% 159% 142% 129% 116% 109% 102% 95% 89% 85% 80% 76% 72% 68% 64% 59% 56%

This table shows the skewness of the estimated default probability (as a percentage) when the estimate is based on average historical default rates over 31 years. The table
is based on 25,000 simulations of average default rates over 31 years. ‘Existing method’ refers to the standard approach in the literature of using the average historical
default rate for a single rating and maturity as an estimate of the ex ante default probability. ‘New method’ refers to the method proposed in Section 2.2, where the default
probability estimate for a single rating and maturity is extracted using the Black-Cox model and 1-, 2-, ..., 20-year default rates for ratings AAA, AA, A, BBB, BB, B,
and C. ‘Ratio’ is the skewness of default probability estimates using the new method divided by the skewness of default probability estimates using the existing method.
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3.1 Data
For the period January 1, 1997 to July 1, 2012, we use daily quotes provided
by Merrill Lynch (ML) on all corporate bonds included in the ML investment-
grade and high-yield indices. These data are used by Schaefer and Strebulaev
(2008) and Acharya, Amihud, and Bharath (2013), among others. We obtain
bond information from the Mergent Fixed Income Securities Database (FISD)
and limit the sample to senior unsecured fixed rate or zero coupon bonds.
We exclude bonds that are callable, are convertible, are putable, are perpetual,
are foreign denominated, are Yankee, have sinking fund provisions, or have
covenants.9 For the period April 1987 to December 1996 we use monthly data
from the Lehman Brothers Fixed Income Database. These data are used by
Duffee (1998), Huang and Huang (2012), and Acharya, Amihud, and Bharath
(2013), among others. We include only data from the Lehman database that
are actual quotes (in contrast to data based on matrix-pricing). The Lehman
database starts in 1973, but there are two reasons we start from April 1987.
First, there are few noncallable bonds before the mid-1980s (see Duffee 1998)
and second, we calculate credit spreads relative to the swap rate and we do
not have data on swap rates prior to April 1987. We use only bonds issued by
industrial firms and restrict our sample to bonds with a maturity of less than
20 years to be consistent with the maturities of the default rates we use as part
of the estimation.10 In total we have 256,698 observations. We show in the
Internet Appendix that dealer quotes are unreliable for short-maturity bonds
due to quotes being bid quotes and when we report bond spreads we therefore
exclude bonds with a maturity less than 3 years.

Table 5 shows summary statistics for the corporate bond sample. The table
shows that the number of bonds with a low rating of B or C is small; for example
there is only one C-rated bond in the maturity group 13–20 years. The reason
is that speculative-grade bonds frequently contain call options which leads to
their exclusion from our sample (see also Booth et al. 2014). In the following we
report results for ratings B and C with the caveat that these results—particularly
for long maturities—are based on few observations and therefore are noisy.

To price a bond in the Black-Cox model, we need the issuing firm’s asset
volatility, leverage ratio, and payout ratio along with the bond’s recovery rate.
Leverage ratio is calculated as the book value of debt divided by firm value
(where firm value is calculated as book value of debt plus market value of
equity). Payout ratio is calculated as the sum of interest payments to debt,
dividend payments to equity, and net stock repurchases divided by firm value.

9 For bond rating, we use the lower of Moody’s rating and S&P’s rating. If only one of the two rating agencies have
rated the bond, we use that rating. We track rating changes on a bond, so the same bond can appear in several
rating categories over time.

10 In the Internet Appendix we show that our results are similar if we use TRACE transactions data for the shorter
period of 2002–2012.
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Table 5
Bond summary statistics

3- to 7-year bond maturity

AAA AA A BBB BB B C all

Number of bonds 21 109 327 289 116 36 14 753
Mean number of bonds pr month 1.69 7.54 22.3 18 6.94 1.71 0.37 58.4
Mean number of quotes pr month 1.687 45.68 105.7 109.8 57.99 13.31 4.497 338.7
Age 2.05 4.73 5.19 5.89 4.37 3.07 2.50 5.08
Coupon 7.19 6.30 7.00 7.57 7.62 9.61 11.72 7.36
Amount outstanding ($mm) 265 329 277 321 414 300 231 322
Time-to-maturity 4.74 4.73 4.87 4.77 4.92 5.25 5.23 4.85

7- to 13-year bond maturity

AAA AA A BBB BB B C all

Number of bonds 16 94 288 276 100 26 11 680
Mean number of bonds pr month 1.28 7.98 20.9 18.1 5.04 0.93 0.3 54.4
Mean number of quotes pr month 1.913 28.19 67.3 70.52 27.12 5.61 3.35 204
Age 7.19 6.95 5.67 4.88 2.86 5.21 9.46 5.26
Coupon 7.21 7.29 7.30 7.84 7.76 9.23 9.95 7.64
Amount outstanding ($mm) 400 308 265 294 535 222 270 317
Time-to-maturity 10.37 8.96 9.26 9.14 8.74 8.94 10.14 9.12

13- to 20-year bond maturity

AAA AA A BBB BB B C all

Number of bonds 3 21 81 75 30 9 1 173
Mean number of bonds pr month 0.307 2.06 8.28 6.26 2.09 0.473 0.0233 19.5
Mean number of quotes pr month 3.73 2.06 26.04 17.94 5.447 2.243 0.41 57.87
Age 14.63 2.40 7.74 5.64 9.64 11.01 9.31 7.66
Coupon 8.29 8.04 8.17 8.25 8.41 7.28 9.22 8.19
Amount outstanding ($mm) 687 208 332 218 227 157 183 297
Time-to-maturity 15.19 16.77 16.61 15.84 16.95 17.27 14.07 16.33

The sample consists of noncallable bonds with fixed coupons issued by industrial firms. This table shows summary
statistics for the data set. Bond yield quotes cover the period 1987Q2–2012Q2. ‘Number of bonds’ is the number
of bonds that appear (in a particular rating and maturity range) at some point in the sample period. ‘Mean number
of bonds pr month’ is the average number of bonds that appear in a month. ‘Mean number of quotes pr month’
is the total number of quotes in the sample period divided by the number of months. For each quote we calculate
the bond’s time since issuance and ‘Age’ is the average time since issuance across all quotes. ‘Coupon’ is the
average bond coupon across all quotes. ‘Amount outstanding’ is the average outstanding amount of a bond issue
across all quotes. ‘Time-to-maturity’ is the average time until the bond matures across all quotes.

An important parameter is the Asset volatility, and here we follow the
approach of Schaefer and Strebulaev (2008) in calculating asset volatility. Since
firm value is the sum of the debt and equity values, asset volatility is given by

σ 2
t =(1−Lt )

2σ 2
E,t +L2

t σ
2
D,t +2Lt (1−Lt )σED,t , (6)

where σt is the volatility of assets, σD,t volatility of debt, σED,t the covariance
between the returns on debt and equity, and Lt is leverage ratio. If we assume
that debt volatility is zero, asset volatility reduces to σt =(1−Lt )σE,t . This is a
lower bound on asset volatility. Schaefer and Strebulaev (2008) (SS) compute
this lower bound along with an estimate of asset volatility that implements
Equation (6) in full. They find that for investment-grade companies the two
estimates of asset volatility are similar while for junk bonds there is a significant
difference. We compute the lower bound of asset volatility, (1−Lt )σE,t , and
multiply this lower bound with SS’s estimate of the ratio of asset volatility
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computed from Equation (6) to the lower bound. Specifically, we estimate
(1−Lt )σE,t and multiply this by 1 if Lt <0.25, 1.05 if 0.25<Lt ≤0.35, 1.10
if 0.35<Lt ≤0.45, 1.20 if 0.45<Lt ≤0.55, 1.40 if 0.55<Lt ≤0.75, and 1.80
if Lt >0.75.11 This method has the advantage of being transparent and easy to
replicate. For a given firm we then compute the average asset volatility over
the sample period and use this constant asset volatility for every day in the
sample period. All firm variables are obtained from CRSP and Compustat, and
Appendix B provides the details.

Summary statistics for the firms in our sample are shown in Table 6. The
average leverage ratios of 0.13 for AAA, 0.14 for AA, 0.27 for A, and 0.37
for BBB are similar to those found in other papers: Huang and Huang (2012)
use a leverage ratio of 0.13 for AAA, 0.21 for AA, 0.32 for A, and 0.43 for
BBB, and Schaefer and Strebulaev (2008) find an average leverage of 0.10 for
AAA, 0.21 for AA, 0.32 for A, and 0.37 for BBB. Average equity volatility
is monotonically increasing with rating, consistent with a leverage effect. The
estimates are similar to those in SS for A-AAA ratings, while the average equity
volatility for BBB firms of 0.38 is higher than the value of 0.33 given in SS.
Asset volatilities are slightly increasing in rating and broadly consistent with
the estimates in SS.

We set the recovery rate to 37.8%, which is Moody’s (2013) average recovery
rate, as measured by post-default trading prices, for senior unsecured bonds for
the period 1982–2012. Finally, the risk-free rate, r , is the swap rate for the
same maturity as the bond. Traditionally, Treasury yields have been used as
risk-free rates, but recent evidence shows that swap rates are a better proxy than
Treasury yields. A major reason is that Treasury bonds enjoy a convenience
yield that pushes their yields below risk-free rates (Feldhütter and Lando 2008;
Krishnamurthy and Vissing-Jorgensen 2012; Nagel 2016). The convenience
yield is for example due to the ability to post Treasuries as collateral with a
significantly lower haircut than other financial securities, an effect outside the
scope of the model.

3.2 Estimation of the default boundary
In this section we estimate the default boundary, a single parameter that we
then use to price bonds across ratings and maturities. Although estimating the
default boundary parameter, d, by fitting to historical (natural) default rates
requires an estimate of the Sharpe ratio, when we compute yield spreads we
use standard “risk-neutral” pricing.

We follow the method outlined in Section 2.2. Specifically, if we observe
a spread on bond i with a time-to-maturity T issued by firm j on date t , we
calculate the firm’s T -year default probability πP (dLjt ,�

P
jt ,T ) where �P

jt =

11 These fractions are based on those in table 7 of SS apart from 1.80, which we deem to be reasonable. Results are
insensitive to other reasonable choices of values for L>0.75. See also Correia, Kang, and Richardson (2014) for
an assessment of different approaches to calculating asset volatility.
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Table 6
Firm summary statistics, industrial firms in Compustat with straight bullet bonds outstanding

#Firms Mean 10th 25th Median 75th 90th

Leverage ratio

AAA 10 0.13 0.07 0.08 0.09 0.14 0.23
AA 53 0.14 0.07 0.10 0.13 0.17 0.23
A 170 0.27 0.13 0.17 0.24 0.34 0.46
BBB 197 0.37 0.17 0.25 0.36 0.48 0.58
BB 100 0.46 0.18 0.29 0.47 0.61 0.73
B 40 0.52 0.21 0.32 0.48 0.73 0.83
C 6 0.76 0.60 0.70 0.80 0.92 0.96
All 393 0.33 0.11 0.18 0.29 0.45 0.61

Equity volatility

AAA 10 0.19 0.15 0.17 0.18 0.20 0.24
AA 53 0.27 0.18 0.22 0.25 0.33 0.37
A 170 0.30 0.20 0.24 0.30 0.36 0.41
BBB 197 0.37 0.24 0.27 0.34 0.42 0.55
BB 100 0.46 0.25 0.31 0.42 0.53 0.74
B 40 0.51 0.31 0.36 0.48 0.65 0.78
C 6 0.73 0.34 0.64 0.73 0.79 1.02
All 393 0.35 0.21 0.25 0.32 0.40 0.54

Asset volatility

AAA 10 0.18 0.15 0.15 0.19 0.19 0.19
AA 53 0.23 0.19 0.22 0.23 0.25 0.28
A 170 0.24 0.17 0.22 0.24 0.28 0.29
BBB 197 0.25 0.17 0.19 0.24 0.28 0.36
BB 100 0.27 0.17 0.23 0.25 0.28 0.40
B 40 0.28 0.16 0.22 0.25 0.39 0.42
C 6 0.26 0.17 0.18 0.22 0.26 0.42
All 393 0.25 0.17 0.22 0.24 0.28 0.33

Payout ratio

AAA 10 0.036 0.012 0.017 0.030 0.049 0.071
AA 53 0.041 0.015 0.027 0.040 0.053 0.066
A 170 0.047 0.019 0.030 0.043 0.058 0.079
BBB 197 0.050 0.017 0.027 0.045 0.065 0.098
BB 100 0.045 0.020 0.027 0.040 0.057 0.078
B 40 0.046 0.018 0.029 0.041 0.061 0.077
C 6 0.068 0.037 0.049 0.056 0.096 0.103
All 393 0.047 0.018 0.028 0.043 0.059 0.083

For each bond yield observation, the leverage ratio, equity volatility, asset volatility, and payout ratio are calculated
for the issuing firm on the day of the observation. Leverage ratio is the ratio of the book value of debt to the
market value of equity plus the book value of debt. Equity volatility is the annualized volatility of daily equity
returns from the last 3 years. Asset volatility is the unlevered equity volatility, calculated as explained in the
text. Payout ratio is yearly interest payments plus dividends plus share repurchases divided by firm value. Firm
variables are computed using data from CRSP and Compustat.

(μjt ,σj ,δjt ) using Equation (A2). Here, σj is the firm’s constant asset volatility,
Ljt , μjt and δjt are the time-t estimates of the firm’s leverage ratio, asset value
drift and payout rate. To calculate μjt we assume a constant Sharpe ratio θ such
that μjt =θσj +rT

t −δjt , where rT
t is the T -year risk-free rate. We use Chen,

Collin-Dufresne, and Goldstein’s (2009) estimate of the Sharpe ratio of 0.22.
In the simulations described above we assumed that firms in a given rating
category had identical initial leverage, payout ratio and asset volatility. Here,
however, leverage, payout ratio and asset volatility are all firm specific.
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For a given rating a and maturity T rounded up to the nearest integer
year, we find all bond observations in the sample with the corresponding
rating and maturity. For a given calendar year y, we calculate the average
default probability πP

y,aT (d) and we then calculate the overall average default
probability for rating a and maturity T , πP

aT (d), by computing the mean across
the N years, πP

aT (d)= 1
N

∑N
y=1π

P
y,aT (d). We denote by π̂P

aT the corresponding
historical default frequency given by Moody’ for the period 1920–2012. For
all major ratings (AAA, AA, A, BBB, BB, B, and C) and horizons of 1–20
years (Moody’s only reports default rates for up to a horizon of 20 years) we
find the value of d that minimizes the sum of absolute differences between the
annualized historical and model-implied default rates by solving

min{d}

C∑
a=AAA

20∑
T =1

1

T

∣∣∣πP
aT (d)−π̂P

aT

∣∣∣. (7)

Using this approach our estimate is d̂ =0.8944.

3.3 The term structure of default probabilities with the estimated default
boundary

Our estimate of d matches the average default probability of firms issuing
straight coupon bullet bonds to average historical default rates and there may
be at least three concerns with this approach. First, firms issuing straight coupon
bullet bonds may be different from the average firm in Moody’s sample. Second,
although the average historical default rate across maturities is matched, the
term structure of default rates might not be matched accurately. Third, there
may be systematic differences in the ability of the model to match default rates
across ratings.

To address these concerns, we use the estimated default boundary to compute
the average default probabilities for the broader sample of all rated industrial
firms in Compustat and compare these to Moody’s historical default rates.
Specifically, we extract from Capital IG the issuer senior debt rating assigned
by Standard & Poor’s. There are almost no rating observations before 1985,
so our sample period is 1985–2012. Table 7 gives summary statistics on the
main parameters for this new sample. Compared to the sample of firms used to
estimate the default boundary (in Table 6) the sample is 4.6 times as large and
has a reasonably large number of speculative-grade firms.

We compute average model default probabilities for a given rating a in
a manner analogous to the way Moody’s calculates historical default rates.
Specifically, on the final day of each month we find all firms for which we
have data and that have rating a, and for those firms and dates we calculate the
term structure of default probabilities, that is, default probabilities for horizons
of 1, 2, . . ., 20 years. We then calculate the average term structure of default
probabilities for each year 1985, . . ., 2012, and, finally, we compute the average
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Table 7
Firm summary statistics, industrial firms in Compustat with a rating

#Firms Mean 10th 25th Median 75th 90th

Leverage ratio

AAA 19 0.12 0.02 0.03 0.07 0.15 0.34
AA 95 0.15 0.04 0.07 0.11 0.18 0.29
A 385 0.20 0.06 0.10 0.17 0.27 0.39
BBB 650 0.28 0.08 0.15 0.25 0.37 0.51
BB 998 0.39 0.13 0.23 0.37 0.54 0.70
B 1,014 0.53 0.21 0.35 0.53 0.72 0.86
C 162 0.72 0.38 0.58 0.77 0.89 0.95
All 2,087 0.35 0.08 0.16 0.30 0.50 0.71

Equity volatility

AAA 19 0.26 0.17 0.21 0.26 0.30 0.35
AA 95 0.28 0.19 0.22 0.27 0.32 0.37
A 385 0.31 0.21 0.25 0.30 0.36 0.42
BBB 650 0.37 0.24 0.28 0.34 0.42 0.52
BB 998 0.48 0.31 0.37 0.45 0.56 0.68
B 1,014 0.65 0.38 0.48 0.61 0.77 0.94
C 162 0.88 0.53 0.62 0.80 1.05 1.24
All 2,087 0.45 0.24 0.30 0.40 0.55 0.72

Asset volatility

AAA 19 0.23 0.18 0.22 0.23 0.26 0.26
AA 95 0.24 0.20 0.21 0.24 0.26 0.29
A 385 0.26 0.20 0.22 0.24 0.28 0.35
BBB 650 0.28 0.20 0.22 0.27 0.32 0.38
BB 998 0.32 0.21 0.25 0.30 0.38 0.44
B 1,014 0.34 0.20 0.25 0.32 0.41 0.51
C 162 0.33 0.18 0.25 0.31 0.40 0.50
All 2,087 0.30 0.20 0.23 0.28 0.35 0.43

Payout ratio

AAA 19 0.027 0.008 0.014 0.023 0.035 0.050
AA 95 0.026 0.005 0.011 0.020 0.034 0.053
A 385 0.032 0.007 0.014 0.026 0.043 0.067
BBB 650 0.037 0.009 0.016 0.030 0.049 0.078
BB 998 0.039 0.009 0.018 0.033 0.054 0.078
B 1,014 0.049 0.010 0.024 0.044 0.068 0.092
C 162 0.067 0.022 0.045 0.068 0.089 0.108
All 2,087 0.039 0.008 0.017 0.032 0.054 0.081

For each firm in Compustat for which there is an S&P rating in Capital IQ, the leverage ratio, equity volatility,
asset volatility, and payout ratio are calculated on December 31 in each year from 1985 to 2012. Leverage ratio
is the ratio of the book value of debt to the market value of equity plus the book value of debt. Equity volatility
is the annualized volatility of daily equity returns from the last 3 years. Asset volatility is the unlevered equity
volatility, calculated as explained in the text. Payout ratio is yearly interest payments plus dividends plus share
repurchases divided by firm value. Firm variables are computed using data from CRSP and Compustat.

term structure across years. We use the 10-year Treasury CMT rate as the
risk-free rate because we do not have swap rates in the first years.

Figure 3 and Table 8 show the average model-implied default probabilities
and Moody’s historical default rates for 1920–2012. In both the figure and table
we show 95% confidence bands for the historical default rate. The confidence
band is obtained by following the simulation procedure in Section 2, where
we simulate over 92 years and use Moody’s historical default rates for the
period 1920–2012 as input. In Table 8, cases where the model-implied default
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Figure 3
Average default probabilities in the Black-Cox model and historical default rates
We merge firm data from CRSP/Compustat with ratings from Standard & Poors, and, for every firm and every
year from 1985 to 2012, we calculate a 1-, 2-, . . ., 19-, 20-year default probability in the Black-Cox model. The
figure shows the average default probabilities along with the average historical default rate 1920–2012 calculated
by Moody’s. A 95% confidence band for the historical default rates are calculated following the approach in
Section 2.1.

probability is outside the 95% and 99% confidence bands are indicated by *
and **, respectively.

We see that in the Black-Cox model there is a statistically significant
underestimation of 1- to 2-year AA and A default probabilities and
overestimation of short-term speculative-grade default probabilities. The term
structure of model-implied default probabilities is close to historical default
rates for A beyond 3 years and for BBB-rated firms. These rating categories
account for more than half of the U.S. corporate bond market volume (measured
by the number of transactions).12

12 According to TRACE Fact Book 2012, 53% of all U.S. corporate bond transaction volume in 2012 was in A- or
BBB-rated bonds (tables C24 and C25).
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Table 8
Average default probabilities in the Black-Cox model and historical default rates

Horizon (years) 1 2 3 4 5 6 8 10 12 15 20

AAA

Model 0.01 0.04∗ 0.10∗ 0.16 0.22 0.28 0.41 0.54 0.67 0.87 1.18
Actual 0.00 0.01 0.03 0.09 0.17 0.25 0.52 0.87 1.16 1.38 1.71
95% c.b. (NaN;NaN) (0.00;0.04) (0.00;0.09) (0.01;0.21) (0.04;0.38) (0.06;0.58) (0.16;1.17) (0.26;1.96) (0.34;2.69) (0.36;3.37) (0.37;4.52)

AA

Model 0.01∗∗ 0.08∗∗ 0.19 0.31 0.45 0.59 0.87 1.16 1.45 1.89 2.58
Actual 0.07 0.22 0.35 0.54 0.83 1.17 1.83 2.50 3.34 4.52 5.85
95% c.b. (0.03;0.13) (0.11;0.37) (0.17;0.62) (0.25;0.99) (0.39;1.54) (0.53;2.17) (0.79;3.48) (1.03;4.88) (1.34;6.59) (1.70;9.09) (2.0;12.3)

A

Model 0.02∗∗ 0.14∗∗ 0.34 0.60 0.91 1.26 2.00 2.77 3.55 4.67 6.37
Actual 0.10 0.31 0.64 0.99 1.38 1.78 2.66 3.62 4.61 5.99 7.93
95% c.b. (0.05;0.17) (0.17;0.51) (0.34;1.06) (0.51;1.69) (0.70;2.39) (0.88;3.16) (1.24;4.82) (1.62;6.69) (1.99;8.64) (2.4;11.5) (2.9;15.8)

BBB

Model 0.30 0.95 1.78 2.70 3.64 4.57 6.37 8.04 9.54 11.53 14.24
Actual 0.29 0.86 1.54 2.29 3.10 3.90 5.46 7.11 8.72 10.87 13.76
95% c.b. (0.18;0.44) (0.52;1.29) (0.92;2.38) (1.33;3.60) (1.75;4.95) (2.14;6.31) (2.87;9.01) (3.6;11.9) (4.3;14.8) (5.2;18.9) (6.2;24.5)

BB

Model 2.23∗∗ 5.61∗∗ 8.76∗∗ 11.54∗ 13.99 16.15 19.78 22.72 25.15 28.09 31.74
Actual 1.35 3.27 5.46 7.75 9.92 11.97 15.71 19.27 22.47 26.65 32.06
95% c.b. (0.95;1.83) (2.27;4.48) (3.73;7.58) (5.2;10.8) (6.6;14.0) (7.8;17.0) (10.1;22.6) (12.2;27.8) (14.2;32.6) (16.6;38.8) (19.4;47.0)

B

Model 8.43∗∗ 16.40∗∗ 22.39∗∗ 27.04∗∗ 30.78∗∗ 33.86∗ 38.65 42.24 45.05 48.31 52.17
Actual 3.80 8.71 13.72 18.16 22.06 25.54 31.41 35.89 39.58 44.22 49.14
95% c.b. (2.93;4.78) (6.6;11.1) (10.4;17.6) (13.7;23.3) (16.5;28.4) (19.0;33.0) (23.3;40.6) (26.5;46.4) (29.0;51.3) (32.2;57.3) (35.3;63.9)

C

Model 23.32∗∗ 36.11∗∗ 43.79∗∗ 49.07∗∗ 52.99∗∗ 56.05∗∗ 60.57∗ 63.80 66.24 69.00 72.17
Actual 14.02 23.81 31.21 36.86 41.40 44.78 49.63 53.88 58.02 63.76 71.34
95% c.b. (11.8;16.4) (19.9;28.1) (26.0;37.0) (30.6;43.8) (34.2;49.1) (36.9;53.2) (40.6;59.0) (44.0;64.0) (47.6;68.8) (52.8;74.8) (60.0;82.2)

We merge firm data from CRSP/Compustat with ratings from Standard & Poors, and, for every firm and every year from 1985 to 2012, we calculate a 1-, 2-, ..., 19-, 20-year default probability in
the Black-Cox model. ‘Model’ shows the average default probabilities. ‘Actual’ shows Moody’s average historical default rates from 1920 to 2012. ‘95% c.b.’ shows 95% confidence bands for
the historical default rates calculated following the approach in Section 2.1. * and ** show when the model-implied default probability is outside the 95% and 99% confidence band, respectively.
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It may seem surprising that the Black-Cox model captures the term structure
of default rates for BBB-rated bonds well because there are a number of
papers showing that, for horizons less than 3–4 years, structural models imply
essentially zero default probabilities for investment-grade firms (Zhou 2001;
Leland 2004, 2006; Cremers et al. 2008; Zhang et al. 2009; and others). We show
in Appendix C that results in the existing literature documenting a failure of
structural models to capture short-term default rates are strongly biased due to a
“convexity effect” arising from Jensen’s inequality. The bias arises when using
a representative firm with average leverage (and average asset volatility and
payout rate) to calculate short-term default probabilities because the default
probability using average leverage is substantially lower than the average
default probability calculated using the distribution of leverage. Our results
show that once we deal with the convexity bias by using data on individual
firms the Black-Cox model captures short-term default rates much better than
previously reported.

3.4 Average corporate bond credit spreads
We calculate average spreads by following the calculations in Duffee (1998).
Specifically, we calculate a monthly average actual spread for a given rating
a, maturity range M1 to M2, and month t . To ease notation, we index the
combination of rating, maturity range and month by h=(a,[M1;M2],t). For
a given h, we find all Nh bond observations with rating a and individual
bond maturities T h

1 ,T h
2 ,...,T h

Nh
, where M1 ≤T h

i <M2, observed on days
τh

1 ,τ h
2 ,...,τ h

Nh
in month t . Denoting the corresponding yield observations as

yh
1 ,yh

2 ,...,yh
Nh

and the swap rates as sw(τh
1 ,T h

1 ),sw(τh
2 ,T h

2 ),...,sw(τh
Nh

,T h
Nh

),
the average yield spread for rating a, maturity range M1 to M2, and month t is

sh =
1

Nh

Nh∑
i=1

(
yh

i −sw(τh
i ,T h

i )
)
. (8)

The average yield spread for a given rating and a given maturity interval is then
the average of the monthly values.

Similarly, we calculate model-implied spreads by replacing the actual spread
yh

i −sw(τh
i ,T h

i ) with the spread s(d̂,�
Q

jh
i

,Ljh
i
,τh

i
,T h

i ) implied by the Black-Cox

model given in Equation (1), where �
Q

jh
i

=(sw(τh
i ,T h

i ),σjh
i
,δjh

i
,τh

i
,R), σjh

i
is the

asset volatility of firm j that issued bond i, Ljh
i
,τh

i
and δjh

i
,τh

i
are the leverage

ratio and payout rate, respectively, of firm j on day τh
i , R =37.8% is the recovery

rate, and the default boundary d̂ =0.8944, as estimated in Section 3.2.
We compute confidence intervals for the model-implied spreads in the

following way. In Section 2.2 we calculate the distribution of the default
boundary. We redo this calculation using Moody’s default rates from 1920
to 2012. That is, we simulate over 92 years and set the leverage ratios
for each rating such that the historical 10-year cumulative default rates for
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AAA, AA, . . . , C for the period 1920–2012 are matched and use for each rating
the average cohort size for the period 1970–2012 in our simulation. For the
estimated default boundary distribution, we calculate the 2.5% and 97.5% quan-
tiles, q2.5% and q97.5% and, since the default boundary is scale independent and
is set to unity in the simulations, we compute the 2.5% and 97.5% quantiles for
d̂ as q2.5%d̂ and q97.5%d̂ , respectively. Finally, since the model-implied spread
is monotone in the default boundary, we calculate the corresponding quantiles
for the model-implied spread using these same values (q2.5%d̂ and q97.5%d̂).

3.4.1 Sorting by rating. Table 9 shows actual and model-implied bond
spreads in our sample, calculated using the approach just described. We see that
the average actual investment-grade spread across maturity is 92 bps, whereas
the average model-implied spread is 111 bps. Accounting for the uncertainty
of default probabilities, the difference is statistically insignificant. We also
see good correspondence between model-implied and actual investment-grade
spreads when we look at the individual maturities 3–7, 7–13, and 13–20 years.
Thus, the Black-Cox model captures average investment-grade spreads well.
Turning to speculative-grade spreads, we see an underprediction of spreads
across maturity with average actual spreads at 544 bps and average model
spreads at 382 bps with the difference being statistically significant.

When we look at individual investment-grade ratings in Table 9 the Black-
Cox model slightly underpredicts spreads on AAA- and AA-rated bonds (by
13–15 bps) and overpredicts spreads on A-rated bonds by 24 bps. For A-rated
bonds the average actual spread across maturity is 61 bps, whereas it is 85 bps in
the model. The average actual BBB spread across maturity is 146 bps, whereas
the average model-implied spread is 169 bps. Thus, the average spread of bonds
where most trading takes place in the U.S corporate bonds—bonds with a rating
of A or BBB—is captured well by the Black-Cox model. For speculative-grade
bonds, underprediction increases as we move down the rating scale. For BB-
rated bonds, there is no significant underprediction for maturities below 13
years, while model spreads are too low for longer maturities.

Overall, the average level of actual and model-implied investment-grade
spreads is statistically not different. In contrast we find that the model
underpredicts speculative-grade spreads; here, the average spread across
maturity is 544 bps in the data and 382 bps in the model, and the difference is
statistically significant.

3.4.2 Sorting by yield spread. The literature has traditionally compared
model-implied and actual credit spreads within rating categories. There are
several reasons for this. First, Moody’s provides yield data and default rates
from 1920, and there is therefore a long history of default and yield organized
by rating. In fact, as far as we are aware, the only publicly available data
on aggregate default rates are organized by rating. Second, spreads organized
by rating show a large variation in the mean, with lower-rated firms having
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Table 9
Actual and model yield spreads

3–20y 3–7y 7–13y 13–20y

Inv Actual spread 92 89 87 87
Model spread 111

(88;128)
107

(82;127)
107

(87;121)
88

(76;96)
Difference 19

(−4;36)
18

(−8;38)
20∗

(0;34)
1

(−11;9)
Observations 294 294 293 244

Spec Actual spread 544 560 417 461
Model spread 382

(305;440)
376

(289;443)
392

(336;429)
314

(279;337)
Difference −162∗∗

(−239;−104)
−184∗∗

(−271;−117)
−25

(−81;12)
−147∗∗

(−182;−124)
Observations 289 276 229 141

AAA Actual spread 16 4 6 22
Model spread 3

(2;4)
3

(1;6)
1

(0;1)
2

(1;2)
Difference −13∗∗

(−14;−12)
−0

(−3;2)
−6∗∗

(−6;−5)
−20∗∗

(−20;−20)
Observations 132 70 70 91

AA Actual spread 23 17 34 26
Model spread 9

(6;10)
2

(1;3)
14

(11;17)
19

(15;22)
Difference −15∗∗

(−17;−13)
−15∗∗

(−16;−14)
−20∗∗

(−23;−17)
−7∗∗

(−11;−4)
Observations 289 279 264 93

A Actual spread 61 50 65 63
Model spread 85

(67;99)
67

(48;82)
102

(82;117)
83

(71;90)
Difference 24∗∗

(6;38)
17

(−2;32)
37∗∗

(17;51)
19∗∗
(8;27)

Observations 294 294 293 223

BBB Actual spread 146 141 141 144
Model spread 169

(134;195)
165

(126;195)
166

(137;186)
131

(112;143)
Difference 23

(−12;49)
24

(−15;54)
25

(−4;46)
−14∗

(−32;−1)
Observations 291 291 257 198

BB Actual spread 377 370 290 398
Model spread 349

(282;397)
320

(247;374)
337

(285;372)
255

(223;277)
Difference −27

(−94;21)
−51

(−124;4)
46

(−5;82)
−142∗∗

(−175;−121)
Observations 259 240 216 114

B Actual spread 675 723 427 445
Model spread 445

(360;509)
480

(376;560)
441

(376;485)
323

(294;342)
Difference −229∗∗

(−314;−166)
−243∗∗

(−347;−163)
15

(−51;59)
−122∗∗

(−150;−103)
Observations 243 203 134 82

C Actual spread 1,442 1,211 1,948 661
Model spread 958

(828;1,041)
1,097

(920;1,209)
783

(709;829)
525

(449;575)
Difference −484∗∗

(−615;−401)
−114∗

(−291;−2)
−1,165∗∗

(−1239;−1,119)
−136∗∗

(−212;−86)
Observations 96 65 42 7

This table shows actual and model-implied corporate bond yield spreads. Spreads are grouped by remaining
bond maturity at the quotation date. ‘Actual spread’ is the average actual spread to the swap rate. “Model spread”
is the average Black-Cox model spreads of the bonds in a given maturity/rating bucket. The average spread is
calculated by first calculating the average spread of bonds in a given month and then calculating the average of
these spreads over months. “Difference” is the difference between the model spread and the actual spread. In
parentheses are 95% confidence bands calculated according to Section 2.2; * implies significance at the 5% level
and ** at the 1% level. “Observations” is the number of monthly observations. The bond yield spreads are from
the period 1987–2012.
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higher average spreads; matching average bond spreads organized by rating
has provided a hard test for structural models.

Although average default rates are available only by rating, we can
nevertheless sort bonds in other ways in order to compare model-implied and
actual spreads. If there is a substantial difference, the model is misspecified in
some dimension. Since any useful sort should result in significant variation in
spreads, the most obvious choice is to sort according by actual spreads.

Table 10 shows model spreads sorted by the size of the actual spread. We see
that for actual spreads below 1,000 bps there is no statistical difference between
model spreads and actual spreads when averaged across maturity. For example,
the actual spread for bonds with spreads between 100 and 150 bps is 121 bps,
whereas it is 136 bps in the model. However, for bond spreads above 150 bps,
we start to see a modest underprediction at long maturities, and it becomes
strong only when spreads are above 300 bps. However, above 1,000 bps the
model substantially underestimates spreads, and here the average model spread
is only around half of the average actual spread.

Overall, the results when sorting by actual spread are similar to those sorted
by rating, namely that spreads for low credit risk firms are matched well while
spreads for the highest credit risk firms, particular for bonds with long maturity,
are under-predicted.

3.5 Time-series variation in yield spreads
Having established that the Black-Cox model can match the average size of
investment-grade credit spreads, we next examine whether the model can also
capture their time-series variation. In each month, we calculate the average
actual yield spread for a given rating according to Equation (8) (where the
spread is relative to the swap rate) along with the corresponding model-implied
average spread and investigate the monthly time series.

To provide an overall assessment of the model’s ability to capture investment-
grade spreads, we group together all investment-grade spreads and all maturities
between 3 and 20 years and plot the actual and model-implied spreads in
Figure 4. We see that the model-implied spread tracks the actual spread well
with a correlation is 93%.

To test more formally the ability of the Black-Cox model to capture the time-
series variation in spreads, we regress the monthly time series of the actual
spread, st , on the model-implied spread, ŝt ,

st =α+βŝt +εt , (9)

and report the β and the R2 of the regression in Table 11, panel A. The table
shows that for all bonds with maturities between 3 and 20 years the regression
of actual investment-grade spreads on model-implied investment-grade spreads
gives a slope coefficient of 0.88 and an R2 equal to 87% showing that once
investment-grade spreads are aggregated model-implied spreads track actual
spreads very well. The R2’s for the separate aggregate regressions for A and
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Table 10
Actual and model yield spreads sorted by actual spread

3–20y 3–7y 7–13y 13–20y

<20bps Actual spread 7 7 8 10
Model spread 15

(11;18)
14

(9;18)
18

(14;22)
19

(16;22)
Difference 8∗∗

(3;11)
7∗∗

(2;11)
10∗∗
(6;13)

9∗∗
(5;12)

Observations 279 279 214 138

20–40bps Actual spread 30 29 30 31
Model spread 37

(27;45)
30

(20;39)
54

(41;63)
36

(30;41)
Difference 7

(−3;15)
1

(−9;10)
23∗∗

(11;32)
5

(−1;9)
Observations 279 272 233 165

40–70bps Actual spread 55 54 55 56
Model spread 72

(55;85)
69

(49;85)
84

(66;98)
56

(47;62)
Difference 17

(−0;30)
15

(−5;31)
29∗∗

(11;42)
0

(−9;7)
Observations 284 277 262 191

70–100bps Actual spread 84 85 84 84
Model spread 104

(80;122)
115

(81;142)
118

(94;135)
87

(74;96)
Difference 20

(−4;38)
30

(−4;57)
34∗∗

(10;50)
3

(−10;12)
Observations 281 264 246 170

100–150bps Actual spread 121 121 120 121
Model spread 136

(105;160)
145

(102;179)
140

(112;160)
121

(104;133)
Difference 15

(−16;39)
25

(−19;59)
19

(−9;39)
−0

(−18;11)
Observations 269 260 254 166

150–200bps Actual spread 172 172 172 171
Model spread 174

(135;203)
167

(120;204)
188

(153;213)
144

(123;158)
Difference 2

(−37;31)
−5

(−52;32)
15

(−20;40)
−27∗∗

(−48;−13)
Observations 252 222 211 120

200–300bps Actual spread 243 242 243 245
Model spread 257

(202;297)
251

(185;303)
305

(253;343)
218

(188;238)
Difference 14

(−40;54)
9

(−57;60)
62∗

(10;100)
−28∗∗

(−57;−8)
Observations 267 222 220 99

300–1,000bps Actual spread 499 523 456 517
Model spread 507

(414;573)
558

(442;642)
499

(430;546)
368

(332;391)
Difference 8

(−85;74)
35

(−81;119)
43

(−26;90)
−149∗∗

(−185;−127)
Observations 268 244 221 150

>1,000bps Actual spread 1,744 1,746 1,789 1,166
Model spread 909

(747;1,026)
1,004

(806;1,151)
735

(646;792)
513

(455;550)
Difference −835∗∗

(−997;−718)
−742∗∗

(−940;−595)
−1,055∗∗

(−1,143;−998)
−653∗∗

(−711;−616)
Observations 132 89 59 15

This table shows actual and model-implied corporate bond yield spreads. Spreads are grouped by the size of the
actual spread and the remaining bond maturity at the quotation date. ‘Actual spread’ is the average actual spread
to the swap rate. ‘Model spread’ is the average Black-Cox model spreads of the bonds in a given maturity/rating
bucket. The average spread is calculated by first calculating the average spread of bonds in a given month and then
calculating the average of these spreads over months. ‘Difference’ is the difference between the model spread
and the actual spread. In parentheses are 95% confidence bands calculated according to Section 2.2; * implies
significance at the 5% level and ** at the 1% level. ‘Observations’ is the number of monthly observations. The
bond yield spreads are from the period 1987–2012.
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Figure 4
Time-series variation in investment-grade spreads
This graph shows the time series of actual and model-implied investment-grade corporate bond spreads. Each
month all daily yield observations in bonds with an investment-grade rating and with a maturity between 3 and
30 years are collected and the average actual spread (to the swap rate) and the average model-implied spread
in the Black-Cox model are computed. The graph shows the time series of monthly spreads. A 95% confidence
band for the model-implied spread is calculated following the approach in Section 2.2.

BBB spreads are high at 70% and 88%, respectively. For speculative-grade and
AAA/AA ratings, the ability of the Black-Cox model to capture the time-series
variation is much lower. More noise due to fewer observations is one factor
contributing to the deteriorating fit.

Panel B shows the regression in changes,

st+1 −st =α+β(ŝt+1 − ŝt )+εt+1, (10)

and we see that the R2’s are substantially lower. This implies that significant
variation in monthly changes in credit spreads is not explained by the Black-Cox
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Table 11
Commonality in time-series variation of actual and model-implied yield spreads

3–20y 3–7y 7–13y 13–20y

A. Regression in levels

Inv β 0.88
(0.06)

0.81
(0.08)

∗ 0.82
(0.09)

0.79
(0.13)

R2 0.87 0.84 0.69 0.59

Spec β 0.85
(0.38)

0.82
(0.41)

0.80
(0.19)

1.55
(0.20)

∗∗

R2 0.16 0.15 0.25 0.75

AAA β 1.17
(0.44)

1.40
(0.14)

∗∗ 1.63
(0.22)

∗∗

R2 0.15 0.26 0.22

AA β 1.07
(0.58)

0.81
(0.34)

1.57
(0.22)

∗ −0.10
(0.04)

∗∗

R2 0.22 0.03 0.62 0.08
A β 0.65

(0.08)

∗∗ 0.52
(0.19)

∗ 0.54
(0.11)

∗∗ 0.40
(0.09)

∗∗

R2 0.70 0.47 0.57 0.41

BBB β 0.82
(0.07)

∗∗ 0.71
(0.09)

∗∗ 0.90
(0.10)

0.72
(0.15)

R2 0.88 0.81 0.74 0.62

BB β 0.72
(0.28)

0.70
(0.31)

0.64
(0.14)

∗ 1.66
(0.28)

∗

R2 0.42 0.39 0.49 0.79

B β 0.61
(0.28)

0.64
(0.30)

0.31
(0.19)

∗∗ 1.14
(0.23)

R2 0.09 0.10 0.06 0.58

C β −0.75
(0.56)

∗∗ −0.34
(0.56)

∗

R2 0.04 0.01

B. Regression in changes

Inv β 0.52
(0.08)

∗∗ 0.47
(0.08)

∗∗ 0.37
(0.09)

∗∗ 0.62
(0.10)

∗∗

R2 0.35 0.33 0.17 0.37

Spec β 0.00
(0.50)

∗ 0.42
(0.49)

0.76
(0.22)

1.30
(0.24)

R2 0.00 0.01 0.17 0.45

AAA β 0.56
(0.27)

0.54
(0.49)

0.57
(0.41)

R2 0.11 0.07 0.08

AA β 0.25
(0.11)

∗∗ 0.21
(0.30)

∗∗ 0.23
(0.12)

∗∗ −0.08
(0.05)

∗∗

R2 0.06 0.01 0.06 0.11

A β 0.37
(0.07)

∗∗ 0.50
(0.07)

∗∗ 0.18
(0.06)

∗∗ 0.47
(0.08)

∗∗

R2 0.27 0.44 0.10 0.36

BBB β 0.46
(0.08)

∗∗ 0.33
(0.08)

∗∗ 0.31
(0.11)

∗∗ 0.67
(0.09)

∗∗

R2 0.32 0.20 0.11 0.54

BB β 0.66
(0.11)

∗∗ 0.61
(0.12)

∗∗ 0.68
(0.10)

∗∗ 1.33
(0.30)

R2 0.34 0.31 0.47 0.41

B β −1.02
(0.32)

∗∗ −0.92
(0.33)

∗∗ −0.18
(0.26)

∗∗ 1.39
(0.37)

R2 0.14 0.13 0.01 0.41

C β −2.12
(1.49)

∗ −2.37
(2.28)

R2 0.08 0.06

For a given rating and maturity group we calculate a monthly average spread by computing the average yield spread
for bonds with the corresponding rating and maturity observed in that month. We do this for both model-implied
spreads and actual spreads (to the swap rate) resulting in a time series of monthly actual spreads s1,s2,...,sT and
implied spreads from the Black-Cox model ŝ1,ŝ2,...,ŝT for the period 1987-2012. Panel A shows the regression
coefficient in the regression of the actual spread on the model-implied spread st =α+βŝt +εt . In parentheses is
the standard error, Newey-West corrected with 12 lags and * implies that β is significantly different from one at
the 5% level and ** at the 1% level. In some months there may not be any observations and if there are less than
100 monthly observations we do not report regression coefficients. Panel B shows regression results for monthly
changes, st+1 −st =α+β(ŝt+1 − ŝt )+εt+1. In parentheses is the ordinary least squares (OLS) standard error, and
* implies that β is significantly different from one at the 5% level and ** at the 1% level.
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model and Collin-Dufresne, Goldstein, and Martin (2001) and Feldhütter
(2012) link this variation to supply/demand shocks.13

3.6 Spread predictions on individual bonds
Our main result is that, when calibrated to match historical default rates, the
Black-Cox model with a constant (1) Sharpe ratio, (2) recovery rate, and (3)
default boundary, and no priced risks beyond diffusion risk can match the
average spread of investment-grade bonds. This result does not necessarily
imply that the model can match spreads on individual bonds with a high degree
of precision, because average spreads may well mask significant individual
pricing errors. While our interest lies mainly in asking whether the model can
capture average spreads, we nevertheless carry out an exploratory analysis on
the ability of the model to capture the cross-section of spreads (for a more
extensive analysis, see Bao 2009).

The first column in Table 12 shows the R2’s from regressing actual spreads
on model-implied spreads (and a constant) at the individual bond level. For
investment-grade bonds the R2 is 44%, which is substantially below the R2

of 87% obtained using monthly average spreads and reported in Table 11.
For speculative-grade bonds, the explanatory power of the regression at the
individual bond level is only 13%, showing that the model has only limited
ability to price speculative-grade bonds.

To give an indication on how the model or parameter estimates might be
improved, we correlate the pricing error—the difference between the actual
and model-implied spread—with variables used in the estimation. Table 12
shows the results. The pricing errors for investment-grade bonds have a
correlation of −0.45 with leverage and −0.34 with the payout rate. This
suggests that estimates for individual bonds could be improved either by
estimating leverage and payout rate in a different way or indeed by changes
to the model. Correlations between (equity and asset) volatilities and pricing
errors are modest and range from −0.14 to 0.12. This may indicate that a better
measurement of volatility and/or incorporation of stochastic asset volatility into
the model may be less important in improving cross-sectional accuracy.

3.7 The role of bond illiquidity
A number of papers examine the impact of illiquidity on corporate bond spreads;
these include Dick-Nielsen, Feldhütter, and Lando (2012) (DFL), Bao, Pan,
and Wang (2011), Friewald, Jankowitsch, and Subrahmanyam (2012), and
Lin, Wang, and Wu (2011). These papers examine transactions data from the
relatively recent past, typically from 2004, but since we use spread data starting
back in 1987, we can provide evidence on the impact of illiquidity on credit

13 Results are similar when we sort by absolute spread change instead of rating (see the Internet Appendix for
details).
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Table 12
Explaining individual pricing errors

Correlation of pricing error with

R2 Lt σe
t σa

t δt

Investment grade 0.44 −0.45 −0.14 0.12 −0.34
Speculative grade 0.13 −0.02 −0.03 −0.02 0.00

The first column shows the R2 from running a regression of actual spreads on individual bonds on the implied
spreads from the Black-Cox where we use all transactions in the data sample, separated into investment grade
and speculative grade. The next columns show the correlation between the pricing error, defined as the difference
between the actual spread and model-implied spread, and variables that may contribute to pricing errors. Lt is the
leverage ratio on the day of the transaction, σe

t is the estimated equity volatility on the day of the transaction, σa
t

is the issuing firm’s asset volatility when estimated day-by-day, δt is the payout rate on the day of the transaction.
The bond yield spreads are from the period 1987–2012.

Table 13
Credit spread residuals sorted on bond age

(1) (2) (3) (4) (5)

Inv 18
(−4;35)

8
(−11;23)

19
(−5;37)

−5
(−32;15)

30∗
(5;48)

[28,320] [26,855] [26,546] [30,998] [31,125]
Spec 88∗∗

(34;125)
56

(−9;101)
−114∗∗

(−203;−51)
−356∗∗

(−424;−306)
−382∗∗

(−430;−350)
[7,425] [8,940] [9,321] [4,865] [4,782]

We first sort all bond spread observations for bonds with a maturity between 3 and 20 years into quintiles based on
the time since the bond was issued. For investment- and speculative-grade bonds, we then calculate the average
difference between the model-implied and actual spread. The table shows this average difference in basis points.
In parentheses are 95% confidence bands calculated according to Section 2.2. * implies significance at the 5%
level and ** at the 1% level. The number of observations are in brackets.

spreads over a longer historical time period. The drawback of our longer time
period is that we cannot calculate transactions-based measures of illiquidity.

Instead we use bond age as a measure of bond illiquidity since age is known
to be related to illiquidity (see Bao et al. 2011; Houweling et al. 2005; and the
references therein). In Table 13 we first sort average credit spread residuals,
defined as the difference between the model-implied and actual credit spread,
into quintiles by bond age and then by whether the bond is investment grade
or speculative grade. The table reports the average credit spread residual and
tests whether this average is different from zero.

For investment-grade bonds there is essentially no relation between the
average pricing error and bond illiquidity. This is consistent with the findings in
DFL, Friewald, Jankowitsch, and Subrahmanyam (2012), and Lin, Wang, and
Wu (2011) that the potential impact of illiquidity on prices of investment-grade
bonds is much smaller than for speculative grade.

In contrast, Table 13 shows a strong relation between pricing errors and bond
illiquidity for speculative-grade bonds. For liquid speculative-grade bonds the
pricing error is modestly positive, but as we move to more illiquid bonds a
strong model underprediction emerges and the average pricing error difference
between bonds in the least and most liquid quintiles is 470 bps. The magnitude
of the pricing error difference across bond illiquidity suggests that much of
the underprediction of speculative-grade credit spreads can be explained by
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bond illiquidity. This in turn suggests incorporating illiquidity into structural
models is important to price speculative-grade bonds. As an interesting class
of such models, He and Milbradt (2014) and Chen et al. (2017) incorporate
search frictions in a structural model of credit risk in such a way that illiquidity
is more important for speculative-grade bonds.

For the 2008–2009 financial crisis, DFL find an illiquidity premium in AAA-,
AA-, A-, and BBB-rated and speculative-grade bonds of 5, 42, 51, 93, and
197 bps, respectively. If we restrict the analysis in Section 3.4 to the crisis
period identified in DFL (2007:Q2–2009:Q2), for maturities between 3 and 20
years we find that the average difference between actual and model-implied
spreads for AAA-, AA-, A-, and BBB-rated and speculative-grade bonds is 18,
63, −43, −33, and 262 bps, respectively (when calculated like in Table 9).
For AAA- and AA-rated bonds, the model underprediction is comparable
to the liquidity premium found in DFL and for speculative-grade bonds the
underprediction is around 100 bps larger. One has to be careful in interpreting
point estimates of average spread differences in basis points over a relatively
short period where spreads were at a historical high and very volatile. But
taking the model overprediction of 43 and 33 bps for A- and BBB-rated bonds
at face value suggests the presence of some model misspecification during the
financial crisis.

3.8 Using default data from 1970 to 2012 to estimate the default
boundary

We saw in Section 1 that when the historical BBB and AAA default rates are
used one at a time as estimates of the BBB and AAA default probabilities, the
appearance of a credit spread puzzle strongly depends on the time period over
which historical default rates are calculated.

To see whether our proposed method suffers from the same drawback,
we estimate the default boundary as described in Section 3.2 but fitting to
Moody’s default rates from 1970 to 2012 rather than from 1920 to 2012 like
in the main analysis. In this case the default boundary is estimated to be
d̂ =0.9302 (compared with 0.8944 found for 1920–2012) and Table 14 shows
average spreads using this value. The table shows that there are only modest
changes in the model-implied spreads. For example, the average investment-
and speculative-grade spreads are 122 and 420 bps, respectively, when using
default rates from 1970 to 2012 compared to 111 and 382 bps, respectively,
when using default rates from 1920 to 2012.

Figure 5 shows the results, using our proposed approach, in the same format
as Figure 1 calibrated both to 1970–2012 and to 1920–2012. Unlike the earlier
results we see that results are very similar. Indeed, given the differences we
observe in Figure 1, the stability of the model-implied spreads is striking and
suggests that by using a cross-section of default rates to calibrate the model,
we can provide both firmer and more stable conclusions.
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Table 14
Actual and model yield spreads when using default rates from 1970 to 2012 to calibrate the model

3–20y 3–7y 7–13y 13–20y

Inv Actual spread 92 89 87 87
Model spread 122

(91;150)
120

(85;154)
116

(90;140)
93

(78;106)
Difference 30

(−1;59)
31

(−4;65)
30∗

(3;53)
7

(−9;20)
Observations 294 294 293 244

Spec Actual spread 544 560 417 461
Model spread 420

(315;517)
420

(301;535)
417

(344;476)
329

(284;364)
Difference −124∗∗

(−229;−27)
−140∗∗

(−259;−24)
−0

(−73;59)
−132∗∗

(−177;−97)
Observations 289 276 229 141

AAA Actual spread 16 4 6 22
Model spread 4

(2;6)
5

(1;11)
1

(0;1)
2

(2;3)
Difference −12∗∗

(−14;−10)
1

(−2;7)
−6∗∗

(−6;−5)
−20∗∗

(−20;−19)
Observations 132 70 70 91

AA Actual spread 23 17 34 26
Model spread 10

(7;13)
2

(1;4)
16

(11;21)
21

(16;26)
Difference −14∗∗

(−17;−11)
−14∗∗

(−15;−13)
−18∗∗

(−23;−13)
−5

(−10;0)
Observations 289 279 264 93

A Actual spread 61 50 65 63
Model spread 94

(69;117)
77

(51;103)
112

(85;136)
88

(73;100)
Difference 33∗∗

(8;56)
27∗

(1;53)
46∗∗

(19;70)
24∗∗

(10;37)
Observations 294 294 293 223

BBB Actual spread 146 141 141 144
Model spread 186

(139;230)
185

(131;236)
180

(141;213)
139

(115;158)
Difference 40

(−7;83)
43

(−10;94)
39∗

(0;72)
−6

(−29;14)
Observations 291 291 257 198

BB Actual spread 377 370 290 398
Model spread 381

(291;460)
356

(256;448)
360

(292;416)
270

(228;303)
Difference 5

(−85;84)
−15

(−114;78)
70∗

(2;126)
−128∗∗

(−170;−95)
Observations 259 240 216 114

B Actual spread 675 723 427 445
Model spread 487

(371;594)
532

(390;670)
471

(385;540)
336

(299;364)
Difference −187∗∗

(−303;−80)
−190∗∗

(−333;−53)
44

(−42;113)
−109∗∗

(−146;−81)
Observations 243 203 134 82

C Actual spread 1,442 1,211 1,948 661
Model spread 1,014

(846;1,136)
1,173

(946;1,339)
814

(720;881)
559

(460;635)
Difference −429∗∗

(−596;−306)
−39

(−265;128)
−1,134∗∗

(−1,228;−1,066)
−102∗∗

(−201;−25)
Observations 96 65 42 7

In the main analysis the default boundary is estimated using Moody’s default rates from 1920 to 2012. This table
shows results when the default boundary is estimated using Moody’s default rates from 1970 to 2012. The table
shows actual and model-implied corporate bond yield spreads. Spreads are grouped by remaining bond maturity
at the quotation date. ‘Actual spread’ is the average actual spread to the swap rate. ‘Model spread’ is the average
Black-Cox model spreads of the bonds in a given maturity/rating bucket. The average spread is calculated by
first calculating the average spread of bonds in a given month and then calculating the average of these spreads
over months. ‘Difference’ is the difference between the model spread and the actual spread. In parentheses are
95% confidence bands calculated according to Section 2.2. * implies significance at the 5% level and ** at the
1% level. ‘Observations’ is the number of monthly observations. The bond yield spreads are from the period
1987–2012.
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Figure 5
Actual and model-implied corporate bond yield spreads when using default rates from 1970 to 2012 and
1920 to 2012
This figure shows average actual and model-implied corporate bond yield spreads estimated using default rates
from either 1970 to 2012 or 1920 to 2012. Model-implied spreads are calculated according to our proposed method
where many default rates across maturity and rating are used in the calibration of the model and the figure shows
results when default rates from either 1970–2012 or 1920–2012 are used in the calibration. Confidence bands
take into account uncertainty about ex ante default probabilities. Spreads are from Tables 9 and 14. Actual bond
yield spreads are average spreads to the swap rate from noncallable bonds issued by industrial firms and from
the period 1987–2012.

3.9 The relation between the estimated default boundary and existing
estimates in the literature

In Section 3.2 we estimate the default boundary to be d̂ =0.8944; that is, a firm
defaults when its (firm) value is less than 89.44% of the face value of debt.
Davydenko (2013) studies the location of the default boundary, measured as
the total market value of the firm in the month preceding default expressed as
a fraction of the face value of debt. He finds that the average default boundary
is 66.0%.

Although our estimate appears to be substantially higher, note that
Davydenko’s boundary is measured as firm value relative to the face value
of debt at the time of default. Ours, on the other hand, is measured relative to
the face value of debt at the time we observe a bond price. To see whether
this difference in definition may explain the gap between our estimate of d
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and Davydenko’s, we use our estimate to calculate a rough estimate of d under
Davydenko’s definition.

The average bond maturity in our sample is 5.72 years, that is, close to 6
years. We use Moody’s default database and find all defaults over the period
1990–2012 for which we can identify the following three data items: (1) the
face value of debt in the year prior to default; (2) the face value of debt 7 years
prior to default (i.e., 6 years earlier); and (3) a rating 7 years prior to default.
We have 128 such observations.

We find the average log growth rate in the face value of debt from 7 years
prior to default to 1 year prior to default to be 27.76%. Thus, based on our
estimate of the default boundary of 89.44% and the growth rate in the face
value of debt, the average default boundary in terms of Davydenko’s definition
is 0.8944e−0.2776 =67.76%, close to Davydenko’s estimates of 66.0%.

The fact that, on average, the face value of a firm’s debt increases over time
suggests that the Black-Cox model as we implement it is misspecified, because
the model assumes that default boundary is constant. Despite this the model
succeeds in capturing the term structure of default rates to a reasonable degree
as Figure 3 shows and the misspecification is therefore “mild” and not crucial
for our main result that the model matches investment-grade spreads.

4. Conclusion

Much of the existing literature on testing structural models relies heavily on
estimates of default probabilities obtained from historical default frequencies.
A much used approach takes the historical default rate for a single rating and
maturity as an estimate of the default probability when calculating the spread at
that same maturity and rating. We find that the outcome of this approach depends
strongly on the historical period from which the default rate is obtained and we
show in simulations that a single historical default rate is a very noisy estimator
of the default probability. Furthermore, the distribution of the historical default
rate for any investment-grade rating is skewed, meaning that the observed
historical default rate is likely to be below the ex ante default probability.
This in turn implies that when testing a structural model that is calibrated to the
historical default rate, one would find predictions of the spread are also likely
to appear too low relative to the actual spread, even if the structural model is
the true model.

We propose a new method to calibrate structural models to historical default
rates. In this approach we extract the default boundary—the value of the
firm, measured as a fraction of the face value of debt, below which the firm
defaults—by minimizing the difference between actual and model-implied
default rates across a wide range of maturities and ratings. We show that
this approach dramatically improves the statistical properties of estimated
investment-grade default probabilities, in terms of both standard deviation
and skewness.
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Using our proposed approach we test the Black-Cox model using U.S. data
on spreads from individual firms over the period 1987–2012. We find that
model spreads match average actual investment-grade credit spreads well.
In other words we do not find evidence of a “credit spread puzzle.” Going
beyond testing the puzzle, we find that the time series of model-implied
investment-grade spreads tracks average actual investment-grade spreads well
with a correlation of 93%. In contrast, we find that the model significantly
underpredicts speculative-grade spreads.

We explore the potential effect of bond illiquidity by sorting pricing errors—
the difference between model-implied and actual spreads—on bond age, a
proxy for bond illiquidity. We find no relation between pricing errors and bond
illiquidity in investment-grade bonds. However, there is a strongly monotone
relation between average pricing errors and bond illiquidity in speculative-
grade bonds, suggesting that the model underprediction for speculative-grade
bonds is due to an illiquidity premium.

Our results show that the credit spread puzzle—the perceived failure of
structural models to explain levels of credit spreads for investment-grade
bonds—has less to do with deficiencies in the models than with the way in
which the models have been implemented. We focus our attention on the Black-
Cox model, but our results have important implications for structural models
in general.

The results in Huang and Huang (2012) show that many structural models
that appear very different in fact generate similar spreads once the models are
calibrated to the same historical default rates, recovery rates, and the equity
premium. The models tested in Huang and Huang (2012) include features
such as stochastic interest rates, endogenous default, stationary leverage ratios,
strategic default, time-varying asset risk premiums, and jumps in the firm value
process, yet all generate a similar level of credit spread. Although our method
of benchmarking historical default rates is different from that of Huang and
Huang (2012), we conjecture that, if benchmarked in the way described in
this paper, the majority of models considered by Huang and Huang (2012)—at
least those with a constant default boundary—would generate spreads similar
to each other and, in particular, to those produced by the Black-Cox model.

Appendix A. The Black-Cox Model

We assume that a firm’s asset value follows a geometric Brownian motion under the natural measure

dVt

Vt

=(μ−δ)dt +σdWP
t , (A1)

where δ is the payout rate to debt and equity holders, μ is the expected return on the firm’s assets,
and σ is the volatility of returns on the asset.

The firm is financed by equity and a single zero-coupon bond with face value F and maturity
T . The firm defaults the first time the asset value is below some fraction d of the face value of
debt. One interpretation of the default boundary is that the bond has covenants in place that allow
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bondholders to take over the firm if firm value falls below the threshold. The cumulative default
probability in the Black-Cox model at time T is

πP (dL,�P ,T )=N

⎡
⎣−

( (−log(dL)+
(
μ−δ− σ2

2

)
T

σ
√

T

)⎤
⎦

+exp

⎛
⎝ 2log(dL)(μ−δ− σ2

2 )

σ 2

⎞
⎠N

⎡
⎣ log(dL)+

(
μ−δ− σ2

2

)
T

σ
√

T

⎤
⎦, (A2)

where L= F
V0

is the leverage and �P =(μ,σ,δ) (see Bao 2009). The risk-neutral default probability,

πQ, is obtained by replacing μ with r in Equation (A2).

Appendix B. Firm Data

To compute bond prices in the Merton model, we need the issuing firm’s leverage ratio, payout
ratio, and asset volatility. This appendix gives details on how we calculate these quantities using
CRSP/Compustat.

Firm variables are collected in CRSP and Compustat. To do so, we match a bond’s CUSIP with
CRSP’s CUSIP. In theory the first 6 digits of the bond’s CUSIP plus the digits “10” correspond to
CRSP’s CUSIP, but, in practice, only a small fraction of firms is matched this way. Even if there
is a match we check if the issuing firm has experienced merger and acquisition (M&A) activity
during the life of the bond. If there is no match, we hand-match a bond’s CUSIP with firm variables
in CRSP/Compustat.

Leverage ratio: Equity value is calculated on a daily basis by multiplying the number of shares
outstanding with the price of shares. Debt value is calculated in Compustat as the latest quarter
observation of long-term debt (DLTTQ) plus debt in current liabilities (DLCQ). Leverage ratio is
calculated as Debt value

Debt value+Equity value .
Payout ratio: The total outflow to stake holders in the firm is interest payments to debt holders,

dividend payments to equity holders, and net stock repurchases. Interest payments to debt holders
is calculated as the previous year’s total interest payments (previous fourth quarter’s INTPNY).
Dividend payments to equity holders is the indicated annual dividend (DVI) multiplied by the
number of shares. The indicated annual dividend is updated on a daily basis and is adjusted for
stock splits, etc. Net stock repurchase is the previous year’s total repurchase of common and
preferred stock (previous fourth quarter’s PRSTKCY). The payout ratio is the total outflow to
stake holders divided by firm value, where firm value is equity value plus debt value. If the payout
ratio is larger than 0.13, three times the median payout in the sample, we set it to 0.13.

Equity volatility: We calculate the standard deviation of daily returns (RET in CRSP) in the
past 3 years to estimate daily volatility. We multiply the daily standard deviation with

√
255 to

calculate annualized equity volatility. If there are no return observations on more than half the
days in the 3-year historical window, we do not calculate equity volatility and discard any bond
transactions on that day.

Appendix C. Convexity Bias When Using a “Representative Firm” to
Calculate Default Probabilities

Our finding in Section 3.3 that the Black-Cox model matches default probabilities for BBB-rated
firms including horizons as short as 1 year is surprising, since it is an established stylized fact in
the literature that short-run default probabilities in structural models with only diffusion risk are
much too low. Papers showing that default probabilities at short horizons are too low include Zhou
(2001), Leland (2004), Leland (2006), Cremers, Driessen, and Maenhout (2008), Zhang, Zhou,
and Zhu (2009), and McQuade (2013), among others.
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Figure A1
Convexity bias when calculating the default probability in the Black-Cox model using average leverage
and comparing it to the average default probability
It is common in the literature to compare historical default rates to model-implied default probabilities, where
the latter are calculated using average firm variables. This introduces a bias because the default probability in
structural models is a nonlinear function of firm variables. The figure illustrates the bias in case of two firm
observations with the same rating, one with a low leverage ratio and one with a high leverage ratio. The two
observations can be two different firms at the same point in time or the same firm at two different points in time.
Asset volatility is 5%, dividend yield 3.7%, Sharpe ratio 0.22, and risk-free rate 5%.

We arrive at a different conclusion because we allow for cross-sectional variation in asset
volatility and both cross-sectional and time-series variation in leverage and payout rates. In contrast,
the existing literature uses a “representative firm” with average asset volatility, leverage, and payout
rate within a given rating category. Using a representative firm leads to bias due to Jensen’s
inequality because the default probability is typically convex in asset volatility and leverage (while
it is close to linear in the payout rate). Figure A1 illustrates this convexity bias in the case of
leverage. The convexity bias when using a representative firm to calculate spreads is known to the
literature, but, importantly, the impact of the convexity bias on the short-run default probabilities
has not been recognized in the literature.14

14 Bhamra et al. (2010) present a structural-equilibrium model with macroeconomic risk and simulate default rates
over 5 and 10 years and find a substantial effect in allowing for firm heterogeneity. They do not look at default
probabilities below 5 years, whereas they are our main focus here.
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Table A1
Convexity bias when calculating default probabilities in the Black-Cox model using the representative
firm approach

Maturity 1 2 3 4 5 6 7 8 9 10

A. True economy (there is variation in leverage ratios)

Average default probability 0.13 0.59 1.24 1.98 2.75 3.50 4.23 4.92 5.58 6.20
Asset volatility 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0

B. Representative firm (Average leverage ratio used)

default probability 0.00 0.00 0.05 0.20 0.49 0.89 1.37 1.90 2.46 3.03
Asset volatility 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0

C. Representative firm, average def. prob. at bond maturity is matched

Default probability 0.13 0.59 1.24 1.98 2.75 3.50 4.23 4.92 5.58 6.20
Implied asset volatility 44.3 37.3 34.3 32.6 31.4 30.5 29.9 29.3 28.9 28.6

D. Representative firm, average def. prob. at 10-year bond maturity is matched

Default probability 0.00 0.03 0.24 0.74 1.47 2.34 3.30 4.28 5.25 6.20
Implied asset volatility 28.6 28.6 28.6 28.6 28.6 28.6 28.6 28.6 28.6 28.6

It is common in the literature to compare average actual default rates to model-implied default probabilities,
where model-implied default probabilities are calculated using average firm variables. This introduces a bias
because the default probability and spread in the Merton model is a nonlinear function of firm variables. This
table shows the magnitude of this bias. Panel A shows, for maturities between one and 10 years, the average
default probability for 100,000 firms that have different leverage ratios but are otherwise identical. Their common
asset volatility is 25% and payout rate 3.7%. Their leverage ratios are simulated from a normal distribution with
mean 0.28 and standard deviation 0.18 (truncated at zero). The risk-free rate is 5%. Panel B shows the default
probability of a representative firm where the average leverage ratio is used. In panel C, for each maturity—one
at a time—an asset volatility is computed such that, for a representative firm with a leverage ratio equal to the
average leverage ratio, the default probability is equal to the average default probability in the economy (given
in the first row in panel A and again in panel C). This is done separately for each maturity. The panel shows
the resulting implied asset volatility. Panel D shows the results of a calculation similar to that in panel C, except
here the asset volatility used to compute the default probability for each maturity is the value that matches the
average 10-year default probability in the economy.

To document the impact of the convexity bias on short-run default probabilities we focus on
heterogeneity in leverage and carry out a simulation of 100,000 firms. For each firm, we use an
asset volatility of 23%, a payout rate of 3.3%, and a Sharpe ratio of 0.22. The firms differ only in
their leverage ratios and we draw 100,000 values from a normal distribution with mean 0.29 and a
standard deviation of 0.18.15 The chosen values are median values for BBB firms, and the standard
deviation of leverage in the simulation is equal to the empirical standard deviation of BBB firms
in the sample. Finally, the risk-free rate is 5%. For each firm, we calculate the cumulative default
probability for different maturities. Panel A in Table A1 shows the average default probability and
the correct asset volatility of 23% that is used for all firms and at all maturities.

Zhou (2001), Leland (2004, 2006), and McQuade (2013) use values of the leverage ratio,
payout rate, and asset volatility averaged over time and firms to calculate model-implied default
probabilities for a representative firm and then compare these with historical averages. To see
the extent of the convexity bias in the Black-Cox model when using their approach, we calculate
the term structure of default probabilities in panel B of Table A1 for a representative firm with a
leverage ratio equal to the mean in our simulation of 0.29. There is a downward bias in default
probabilities relative to the correct values given in panel A, and the bias becomes more pronounced
at shorter maturities. For example, the 1-year default probability of the representative firm in panel
B is 0.00%, whereas the true average default probability in panel A is 0.42%. The aforementioned

15 If a simulated leverage ratio is negative, we set it to zero. This implies that the average leverage ratio is slightly
higher than 0.29, namely 0.2937 in our simulation.
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papers compare the default probability of the representative firm with the average historical default
rate and since the historical default rate reflects the average default probabilities in panel A, their
results for particularly short-maturity default probabilities are strongly biased.

Cremers et al. (2008), Zhang et al. (2009), and Huang and Huang (2012) let a representative firm
match historical default rates by backing out asset volatility. To examine how the convexity bias
influences the implied asset volatility, we proceed as follows. For a given maturity, we compute
the asset volatility that allows the representative firm to match the average default probability in
the economy at that given maturity. Panel C shows the implied asset volatilities, and we see two
problems with this approach. The first problem is that asset volatility is biased: all firms in the
economy have an asset volatility of 23%, and yet the implied asset volatility ranges from 27.0%
at the 10-year horizon to 43.3% at the 1-year horizon. The finding that implied asset volatility in
the diffusion-type structural models is too high, particularly at shorter horizons, has been seen as
a failure of the models, but this example shows that the high implied asset volatility mechanically
arises from the use of a representative firm. The second problem is that it is not possible to match
the term structure of default probabilities without counterfactually changing the asset volatility
maturity-by-maturity.

Cremers, Driessen, and Maenhout (2008) and Zhang, Zhou, and Zhu (2009) use a representative
firm to imply out asset volatility by matching long-term default rates and then use this asset volatility
to calculate the term structure of default probabilities. We replicate this approach by implying out
the asset volatility that makes the representative firm’s default probability match the average default
probability for the 10-year bond in the economy and then calculate the term structure of default
probabilities for this representative firm. The implied asset volatility is 27.0% and the term structures
are in panel D. The difference between the implied asset volatility of 27.0% and the true value of
23% reflects a moderate convexity bias at the 10-year horizon, but since the bias becomes more
severe at shorter horizons, the strong downward bias in default probabilities reappears as maturity
decreases. Thus, the bias in short-term default probabilities persists when using a representative
firm and imputing asset volatility by matching a long-term default rate.16

In summary, we show that the term structure of default probabilities in the Black-Cox model is
downward biased, and more so at short maturities, when using a representative firm. This is likely
to be true for any standard structural model: default probabilities are strongly bias downward at
short maturities. Existing evidence (showing that default probabilities at short horizons are much
too low) in Zhou (2001), Leland (2004, 2006), Cremers, Driessen, and Maenhout (2008), Zhang,
Zhou, and Zhu (2009), and McQuade (2013) is subject to this strong bias and therefore not reliable.
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