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ABSTRACT
We present a new estimation approach that allows us to extract from
spreads in synthetic credit markets the contribution of systematic and
idiosyncratic default risk to total default risk. Using an extensive dataset
of 90,600 credit default swap and collateralized debt obligation (CDO)
tranche spreads on the North American Investment Grade CDX in-
dex, we conduct an empirical analysis of an intensity-based model for
correlated defaults. Our results show that systematic default risk is an
explosive process with low volatility, while idiosyncratic default risk is
more volatile but less explosive. Also, we find that the model is able
to capture both the level and time series dynamics of CDO tranche
spreads. ( JEL: C52)

KEYWORDS: CDO pricing, Correlated defaults, Credit risk, Intensity
based model

Campbell and Taksler (2003) show that idiosyncratic firm-level volatility is a major
driver of corporate bond yield spreads and that there has been an upward trend
over time in idiosyncratic equity volatility in contrast to market-wide volatility.
This suggests that in order to understand changing asset prices over time, it is
important to separate out and understand the dynamics of both idiosyncratic and
systematic volatility. In this paper, we present a new approach to separate out the
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size and time series behavior of idiosyncratic and systematic (default intensity)
volatility by using information in synthetic credit markets.

Markets for credit derivatives have experienced massive growth in recent
years (see Duffie 2008) and numerous models specifying default and correlation
dynamics have been proposed. A good model of multiname default should ide-
ally have the following properties (see Collin-Dufresne 2009 for a discussion). First,
the model should be able to match prices consistently such that for a fixed set of
model parameters, prices are matched over a period of time. This is important for
pricing nonstandard products in a market where prices are available for standard
products. Second, the model should have parameters that are economically inter-
pretable such that parameter values can be discussed and critically evaluated. If a
nonstandard product needs to be priced and parameters cannot be inferred from
existing market prices, economic interpretability provides guidance in choosing
parameters. Third, credit spreads and their correlation should be modeled dynam-
ically such that options on multiname products can be priced. And fourth, since
market makers quote spreads at any given time, pricing formulas should not be
too time-consuming to evaluate.

In single-name default modeling, the stochastic intensity-based framework in-
troduced in Lando (1994) and Duffie and Singleton (1999) has proven very suc-
cessful and is widely used.1 Default of a firm in an intensity-based model is deter-
mined by the first jump of a pure jump process with a stochastic default intensity.
We follow Duffie and Gârleanu (2001) and model the default intensity of a firm
as the sum of an idiosyncratic and a common component, where the latter affects
the default of all firms in the economy. In this setting, credit spreads are matched,
parameters are interpretable, and pricing of options is possible. While the model
has many attractive properties, it has not been used much because estimating the
model is challenging.

We present a new approach to estimate intensity-based models from spreads
observed in synthetic credit markets. The main challenge so far has been that the
estimation of a model based on an index with 125 names requires simultaneous
estimation of a common factor and 125 idiosyncratic factors. The solution has been
to impose strong parameter restrictions on the idiosyncratic factors (see among
others Mortensen 2006; Eckner 2007, 2009). We specify the process for systematic
default risk and show how idiosyncratic risk can be left unmodeled. This reduces
the problem of estimating 126 factors to estimating one factor. Subsequently, we
parameterize and estimate idiosyncratic default factors one at a time. Thus, our
approach reduces the problem of estimating 126 factors simultaneously to 126
single-factor estimations. Furthermore, restrictions on idiosyncratic factors are not
necessary.

We apply our approach to the North American Investment Grade (NA IG)
CDX index and estimate both systematic and idiosyncratic default risk as affine

1Examples of empirical applications are Duffie and Singleton (1997), Duffee (1999), and Longstaff, Mithal,
and Neis (2005).
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jump-diffusion processes using credit default swap (CDS) and collateralized debt
obligation (CDO) spreads. Papers imposing strong parameter restrictions have
found that intensity-based jump-diffusion models can match the levels but not the
time series behavior of CDO tranche spreads (see Eckner 2007 for a discussion). We
find that the models can in fact match not only the levels but also the time series
behavior in tranche spreads. That is, once parameter restrictions are not imposed,
the model gains the ability to match time series dynamics of systematic and unsys-
tematic default risk. We also find that idiosyncratic default risk is a major driver
of total default risk consistent with the findings in Campbell and Taksler (2003).
Furthermore, we confirm the finding in Zhang, Zhou, and Zhu (2009) that both
diffusion volatility and jumps are important for default risk. More importantly,
our analysis allows us to separate idiosyncratic and systematic default risk into a
diffusion and a jump part, and this yields new insights: compared to systematic
default risk, idiosyncratic default risk has a higher diffusion volatility, a higher
contribution from jumps, and is less explosive.

An alternative modeling approach to that of ours is to model aggregate port-
folio losses and fit the model to CDO tranche spreads. This is the approach taken
in for example Longstaff and Rajan (2008), Errais, Giesecke, and Goldberg (2010),
and Giesecke, Goldberg, and Ding (2011). Since the default intensity of individual
firms is not modeled, this approach is not useful for examining individual default
risk, whether it is systematic or unsystematic.

The paper is organized as follows. Section 1 formulates the multiname default
model and derives CDO tranche pricing formulas. Section 2 explains the estima-
tion methodology and Section 3 describes the data. Section 4 examines the ability
of the model to match CDO tranche spreads and examines the properties of sys-
tematic default risk, while idiosyncratic default risks are examined in Section 5.
Section 6 concludes.

1 INTENSITY-BASED DEFAULT RISK MODEL

This section explains the model framework that we employ for pricing single-
name and multiname credit securities. For single-name CDSs, we use the intensity-
based framework introduced in Lando (1994) and Duffie and Singleton (1999). For
multiname CDO valuation, we follow Duffie and Gârleanu (2001) and model the
default intensity of each underlying issuer as the sum of an idiosyncratic and a
common process. Default correlation among issuers thus arises through the joint
dependence of individual default intensities on the common factor. Furthermore,
we generalize the model in Duffie and Gârleanu (2001) by allowing for a flexi-
ble specification of the idiosyncratic processes while maintaining semianalytical
calculation of the loss distribution as in Mortensen (2006). This extension allows
us to avoid the ad hoc parameter restrictions that are common in the existing
literature.
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1.1 Default Modeling

We assume that the time of default of a single issuer, τ, is modeled through
an intensity (λt)t>0, which implies that the risk-neutral probability at time t of
defaulting within a short period of time Δt is approximately

Qt(τ 6 t+ Δt|τ > t) ≈ λtΔt.

Unconditional default probabilities (DPs) are given by

Qt(τ 6 s) = 1− EQ
t

[

exp

(

−
∫ s

t
λu du

)]

, (1)

which shows that DPs in an intensity-based framework can be calculated using
techniques from interest rate modeling.

In our model, we consider a total of N different issuers. To model correlation
between individual issuers, we follow Mortensen (2006) and assume that the in-
tensity of each issuer is given as the sum of an idiosyncratic component and a
scaled common component

λi,t = aiYt + Xi,t, (2)

where a1, . . . , aN are nonnegative constants and Y, X1, X2, . . . , XN are independent
stochastic processes. The common factor Y creates dependence in default occur-
rences among the N issuers and may be viewed as reflecting the overall state of
the economy, while Xi similarly represents the idiosyncratic default risk for firm i.
Thus, ai indicates the sensitivity of firm i to the performance of the macroeconomy,
and we allow this parameter to vary across firms, contrary to Duffie and Gârleanu
(2001) that assume ai = 1 for all i and thereby enforce a homogeneous impact of
the macroeconomy on all issuers.

We assume that the common factor follows an affine jump-diffusion under the
risk-neutral measure

dYt = (κ0 + κ1Yt)dt+ σ
√

Yt dWQ
t + dJQ

t , (3)

where WQ is a Brownian motion, jump times (independent of WQ) are those of a
Poisson process with intensity l > 0, and jump sizes are independent of the jump
times and follow an exponential distribution with mean μ > 0. This process is
well defined for κ0 > 0. As a special case, if the jump intensity is equal to zero the
default intensity then follows a Cox-Ingersoll-Ross (CIR) process.

We do not impose any distributional assumptions on the evolution of
the idiosyncratic factors X1, . . . , XN . In particular, they are not required to be
affine jump-diffusions. This generalizes the setup in Duffie and Gârleanu (2001),
Mortensen (2006), and Eckner (2009), where the idiosyncratic factors are required
to be affine jump-diffusions with very restrictive assumptions on their parameters.
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1.2 Risk Premium

For the basic affine process in Equation (3), we assume an essentially affine risk
premium for the diffusive risk and constant risk premia for the risk associated with
the timing and sizes of jumps. Cheridito, Filipovic, and Kimmel (2007) propose an
extended affine risk premium as an alternative to an essentially affine risk pre-
mium, which would allow the parameter κ0 to be adjusted under P in addition to
the adjustment of κ1. However, extended affine models require the Feller condition
to hold and since this restriction is likely to be violated as discussed in Feldhütter
(2006), we choose the more parsimonious essentially affine risk premium.2

This leads to the following dynamics for the common factor under the histor-
ical measure P:

dYt = (κ0 + κP
1 Yt)dt+ σ

√
Yt dWP

t + dJP
t , (4)

where WP is a Brownian motion, jump times (independent of WP) are those of
a Poisson process with intensity lP, and jump sizes are independent of the jump
times and follow an exponential distribution with mean μP > 0.

1.3 Aggregate Default Distribution

Our model allows for semianalytic calculation of the distribution of the aggregate
number of defaults among the N issuers. More specifically, we can at time t cal-
culate in semi-closed form the distribution of the aggregate number of defaults at
time s > t by conditioning on the common factor. If we let

Zt,s =
∫ s

t
Yu du

denote the integrated common factor, then it follows from Equations (1) and
(2) that conditional on Zt,s, defaults are independent and the conditional DPs
given as

pi,t(s|z) = Qt(τi 6 s|Zt,s = z) = 1− exp(−aiz)E
Q
t

[

exp

(

−
∫ s

t
Xi,u du

)]

. (5)

The total number of defaults at time s among the N issuers, DN
s , is then found by

the recursive algorithm3

Qt(D
N
s = j|z) = Qt(D

N−1
s = j|z)(1− pN,t(s|z)) +Qt(D

N−1
s = j− 1|z)pN,t(s|z)

2To illustrate why the Feller condition is necessary in extended affine models consider the simple diffusion

case, dYt = (κ0 + κ1Yt)dt+ σ
√

Yt dWQ
t . The risk premium Λt =

λ0√
Yt
+ λ1

√
Yt keeps the process affine

under P but the risk premium explodes if Yt = 0. To avoid this, the Feller restriction κ0 >
σ2

2 under both
P and Q ensures that Yt is strictly positive.

3The last term disappears if j = 0.
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due to Andersen, Sidenius, and Basu (2003). The unconditional default distribution
is therefore given as

Qt(D
N
s = j) =

∫ ∞

0
Qt(D

N
s = j|z) ft,s(z)dz, (6)

where ft,s is the density function for Zt,s. Finally, ft,s can be determined by Fourier
inversion of the characteristic function φZt,s for Zt,s as

ft,s(z) =
1

2π

∫ ∞

−∞
exp(−iuz)φZt,s (u)du, (7)

where we apply the closed-form expression for φZt,s derived in Duffie and
Gârleanu (2001).4

1.4 Synthetic CDO Pricing

CDOs began to trade frequently in the mid-nineties and in the last decade, issuance
of CDOs has experienced massive growth (see BIS 2007). In a CDO, the credit risk
of a portfolio of debt securities is passed on to investors by issuing CDO tranches
written on the portfolio. The tranches have varying risk profiles according to their
seniority. A synthetic CDO is written on CDS contracts instead of actual debt secu-
rities. To illustrate the cash flows in a synthetic CDO, an example that reflects the
data used in this paper is useful.

Consider a CDO issuer, called A, who sells credit protection with notional $0.8
million in 125 5-year CDS contracts for a total notional of $100 million. Each CDS
contract is written on a specific corporate bond, and agent A receives quarterly
a CDS premium until the CDS contract expires or the bond defaults. In case of
default, agent A receives the defaulted bond in exchange for face value. The loss is
therefore the difference between face value and market value of the bond.5

Agent A at the same time issues a CDO tranche on the first 3% of losses in
his CDS portfolio and agent B buys this tranche, which has a principal of $3 mil-
lion. No money is exchanged at time 0, when the tranche is sold. If the annual
premium on the tranche is, say, 2000 basis points, agent A pays a quarterly pre-
mium of 500 basis points to agent B. If a default occurs on any of the underly-
ing CDS contracts, the loss is covered by agent B and his principal is reduced
accordingly. Agent B continues to receive the premium on the remaining princi-
pal until either the CDO contract matures or the remaining principal is exhausted.
Since the first 3% of portfolio losses are covered by this tranche, it is called the
0–3% tranche. Agent A similarly sells 3–7%, 7–10%, 10–15%, 15–30%, and 30–100%
tranches such that the total principal equals the principal in the CDS contracts. For

4Duffie and Gârleanu (2001) derive an explicit solution for EQ
t [exp(q

∫ s
t Yu du)] when q is a real number,

but as noted by Eckner (2009), the formula works equally well for q complex.
5Pricing CDS contracts is explained in Appendix A.
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a tranche covering losses between K1 and K2, K1 is called the attachment point and
K2 the exhaustion point.

Next, we find the fair spread at time t on a specific CDO tranche. Consider a
tranche that covers portfolio losses between K1 and K2 from time t0 = t to tM = T
and assume that the tranche has quarterly payments at time t1, . . . , tM. The tranche
premium is found by equating the value of the protection and premium payments.
We denote the total portfolio loss in percent at time s as Ls, that is, the percentage
number of defaults DN

s / N times 1 − δ, where δ is the recovery rate, which we
assume to be constant at 40%. The tranche loss is then given as

TK1,K2(Ls) = max{min{Ls, K2} − K1, 0},

and the value of the protection payment in a CDO tranche with maturity T is
therefore

Prot(t, T) = EQ
t

[∫ T

t
exp

(

−
∫ s

t
ru du

)

dTK1,K2(Ls)

]

,

while the value of the premium payments is the annual tranche premium S(t, T)
times

Prem(t, T) = EQ
t

[
M

∑
j=1

exp

(

−
∫ tj

t
ru du

)

×(tj − tj−1)
∫ tj

tj−1

K2 − K1 − TK1,K2(Ls)

tj − tj−1
ds

]

,

where ru is the risk-free interest rate and
∫ tj

tj−1

K2−K1−TK1,K2
(Ls)

tj−tj−1
ds is the remaining

principal during the period tj−1 to tj. The CDO tranche premium at time t is thus

given as S(t, T) = Prot(t,T)
Prem(t,T) .

We follow Mortensen (2006) and discretize the integrals appearing in
Prot(t, T) and Prem(t, T) at premium payment dates, we assume that the risk-free
rate is uncorrelated with portfolio losses and that defaults occur halfway between
premium payments. Under these assumptions, the value of the protection pay-
ment is

Prot(t, T) =
M

∑
j=1

P

(

t,
tj + tj−1

2

)
(
EQ

t [TK1,K2(Ltj )]− EQ
t [TK1,K2(Ltj−1)]

)
,

while the expression for the premium payments reduces to

Prem(t, T) =
M

∑
j=1

(tj − tj−1)P(t, tj)

(

K2 − K1 −
EQ

t [TK1,K2(Ltj−1)] + EQ
t [TK1,K2(Ltj )]

2

)

,
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where P(t, s) = EQ
t [exp(−

∫ s
t ru du)] is the price at time t of a risk-less zero-coupon

bond maturing at time s.

2 ESTIMATION

The parameters in our intensity model are estimated in three separate steps. First
we imply out firm-specific term structures of risk-neutral survival probabilities
from daily observations of CDS spreads, second, we use the inferred survival prob-
abilities to estimate each issuer’s sensitivity ai to the economy-wide common fac-
tor Y, and finally, we estimate the parameters and the path of the common factor
using a Bayesian Markov Chain Monte Carlo (MCMC) approach.6 An important
ingredient in the third step is our explicit use of the calibrated survival probabil-
ities, which implies that we do not need to impose any structure on the idiosyn-
cratic factors Xi.

In other words, we can estimate the model without putting specific structure
on the idiosyncratic factors and this has several advantages, which we discuss in
Section 2.1. Note also that our estimation approach is consistent with the common
view that CDS contracts may be used to read off market views of marginal DPs,
whereas basket credit derivatives instead reflect the correlation patterns among
the underlying entities (see, e.g., Mortensen 2006).

In an additional fourth step of the estimation procedure, we take in Section
5 a closer look at the cross-section of the idiosyncratic factors implicitly given by
the inferred survival probabilities and the estimated common factor. Here, we im-
pose a dynamic structure on each Xi and then estimate the parameters for each
idiosyncratic factor separately, again using MCMC methods.

2.1 A General Estimation Approach

For each day, in our data sample, we observe five CDO tranche spreads as well as
CDS spreads for a range of maturities for each of the 125 firms underlying the CDO
tranches. Previous literature on CDO pricing has also studied models of the form
given in Equation (2), but only by imposing strong assumptions on the parameters
of the idiosyncratic factors Xi, as well as by disregarding the information in the
term structure of CDS spreads (Mortensen 2006; Eckner 2007, 2009). In this paper,
we remove both these shortcomings by allowing the idiosyncratic factors to be of
a very general form, while we at the same time use all the available information
from each issuer’s term structure of CDS spreads.

Theoretically, if we had CDS contracts for any maturity, we could extract sur-
vival probabilities for any future time-horizon, but in practice, CDS contracts are
only traded for a limited range of maturities. To circumvent this problem, we

6For a general introduction to MCMC, see Robert and Casella (2004) and for a survey of MCMC methods
in financial econometrics, see Johannes and Polson (2006).
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assume a flexible parametric form for the term structure of risk-neutral survival
probabilities and use that to infer survival probabilities from the observed CDS
spreads.7 That is, on any given day t and for any given firm i, we extract from the
observed term structure of CDS spreads the term structure of marginal survival
probabilities s 7→ qi,t(s), where

qi,t(s) = Qt(τi > s) = EQ
t

[

exp

(

−
∫ s

t
(aiYu + Xi,u)du

)]

,

see Appendix B for details. Once we condition on the value of the common factor,
this directly gives us the idiosyncratic component

EQ
t

[

exp

(

−
∫ s

t
Xi,u du

)]

of the risk-neutral survival probability. Thus, we can use observed CDS spreads

to derive values of the function s 7→ EQ
t [exp(−

∫ s
t Xi,udu)], which is all we need

to calculate the aggregate default distribution (and hence compute CDO tranche
spreads) using Equation (5). Therefore, we do not need to explicitly model the
stochastic behavior of each Xi in order to price CDO tranches.

For each firm i in our sample, the parameter ai measures that firm’s sensitivity
to the overall state of the economy, and this parameter can be estimated directly
from the inferred term structures of survival probabilities s 7→ qi,t(s). Intuitively,
ai measures to what extent the DP of firm i is correlated with the average DP (since
this average mainly reflects exposure to the systematic risk factor Y), and therefore
a consistent estimate of ai is given by the slope coefficient in the regression of firm
i’s short-term DP on the average short-term DP of all 125 issuers.8 Appendix C
provides the technical details.

Once we have inferred marginal DPs from CDS spreads and estimated com-
mon factor loadings ai, we can then, given the parameters and current value of the
common factor Y, price CDO tranches.

2.2 MCMC Methodology

In order to write the CDO pricing model on state space form, the continuous-time
specification in Equation (4) is approximated using an Euler scheme

Yt+1 − Yt = (κ0 + κP
1 Yt)Δt + σ

√
ΔtYtε

Y
t+1 + Jt+1Zt+1, (8)

7This procedure is essentially similar to the well-known technique for inferring a term structure of interest
rates from observed prices of coupon bonds, see Nelson and Siegel (1987).

8The average of the a′is are without loss of generality normalized to 1.
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where Δt is the time between two observations and

εY
t+1 ∼ N(0, 1),

Zt+1 ∼ exp(μP),

P(Jt+1 = 1) = lPΔt.

To simplify notation in the following, we let ΘQ = (κ0, κ1, l, μ, σ), ΘP =
(κP

1 , lP, μP), and Θ = (ΘQ, ΘP).
On each day t = 1, . . . , T, five CDO tranche spreads are recorded and stacked

in the 5 × 1 vector St, and we let S denote the 5 × T matrix with St in the tth
column. The logarithm of the observed CDO spreads are assumed to be observed
with measurement error, so the observation equation is

log(St) = log( f (ΘQ, Yt)) + εt, εt ∼ N(0, Σε), (9)

where f is the CDO pricing formula. Appendix D gives details on how to cal-
culate f in the estimation of the common factor Y. For the estimation of each
of the idiosyncratic factors Xi in Section 5, Y is replaced by Xi and f is in-
stead the model-implied idiosyncratic part of the survival probability, that is,

EQ
t [exp(−

∫ t+s
t Xi,udu)], calculated for each of the time horizons s = 0.5, 1, 2, 3,

4, and 5 years.
The interest lies in samples from the target distribution p(Θ, Σε, Y, J, Z|S). The

Hammersley–Clifford Theorem (Hammersley and Clifford 1970 and Besag 1974)
implies that samples are obtained from the target distribution by sampling from a
number of conditional distributions.

Effectively, MCMC solves the problem of simulating from a complicated tar-
get distribution by simulating from simpler conditional distributions. If one sam-
ples directly from a full conditional the resulting algorithm is the Gibbs sampler
(Geman and Geman 1984). If it is not possible to sample directly from the full
conditional distribution, one can sample by using the Metropolis–Hastings algo-
rithm (Metropolis et al. 1953). We use a hybrid MCMC algorithm that combines
the two since not all conditional distributions are known. Specifically, the MCMC
algorithm is given by (where Θ\θi

is defined as the parameter vector Θ without

parameter θi)9

9All random numbers in the estimation are draws from Matlab 7.0’s generator which is based on
Marsaglia and Zaman (1991)’s algorithm. The generator has a period of almost 21430 and therefore the
number of random draws in the estimation is not anywhere near the period of the random number
generator.
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p
(
θi|Θ

Q
\θi

, ΘP, Σε, Y, J, Z, S
)
∼Metropolis–Hastings, for θi = κ0, σ,

p
(
κP

1 |Θ
Q, ΘP

\κP
1

, Σε, Y, J, Z, S
)
∼Normal,

p
(
lP|ΘQ, ΘP

\lP , Σε, Y, J, Z, S
)
∼ Beta,

p
(
μP|ΘQ, ΘP

\μP , Σε, Y, J, Z, S
)
∼ Inverse Gamma,

p(Σε|Θ, Y, J, Z, S)∼ Inverse Wishart,

p(Y|Θ, Σε, J, Z, S)∼Metropolis–Hastings,

p(J|Θ, Σε, Y, Z, S)∼ Bernoulli,

p(Z|Θ, Σε, Y, J, S)∼ Exponential or Restricted Normal.

Details of the derivations of the conditional and proposal distributions in the
Metropolis–Hastings steps are given in Appendix E. Both the parameters and the
latent processes are subject to constraints and if a draw is violating a constraint it
can simply be discarded (Gelfand, Smith, and Lee 1992).

3 DATA

In our estimation, we use daily CDS and CDO quotes from MarkIt Group Limited.
MarkIt receives data from more than 50 global banks and each contributor pro-
vides pricing data from its books of record and from feeds to automated trading
systems. These data are aggregated into composite numbers after filtering out out-
liers and stale data and a price is published only if a minimum of three contributors
provide data.

We focus in this paper on CDS and CDO prices (i.e., spreads) for defaultable
entities in the Dow Jones CDX NA IG index. The index contains 125 NA IG entities
and is updated semiannually. For our sample period March 21, 2006 to September
20, 2006, the latest version of the index is CDX NA IG Series 6. We specifically
select the most liquid CDO tranches, the 5-year tranches, with CDX NA IG 6 as the
underlying pool of reference CDSs. These tranches mature on June 20, 2011. Daily
spreads of the five CDO tranches we consider: 0–3%, 3–7%, 7–10%, 10–15%, and
15–30% are not available for the first 7 days of the period, so the data we use in the
estimation cover the period from March 30, 2006 to September 20, 2006. There are
holidays on April 14, April 21, June 3, July 4, and September 4, thus leaving a total
of 120 days with spreads available.

The quoting convention for the equity tranche (i.e., the 0–3% tranche) differs
from that of the other tranches. Instead of quoting a running premium, the equity
tranche is quoted in terms of an upfront fee. Specifically, an upfront fee of 30%
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Table 1 Summary statistics. Panel A reports summary statistics for CDS spreads of the
125 constituents of the CDX NA IG 6 index over the period March 30, 2006 to September
20, 2006. Panel B reports summary statistics for the five CDO tranches: 0–3%, 3–7%,
7–10%, 10–15%, and 15–30% of the CDX NA IG 6 index over the same period

0.5 year 1 year 2 year 3 year 4 year 5 year
Maturity (in bps) (in bps) (in bps) (in bps) (in bps) (in bps)

Panel A: CDS spreads for CDX NA IG 6 constituents

Mean 6.78 8.75 14.58 21.52 30.52 39.14
Std. 5.77 6.62 11.25 16.74 23.44 29.82
Median 4.86 6.56 10.72 16.07 22.51 29.03
Min. 0.41 1.73 2.65 2.94 3.99 5.45
Max. 56.46 59.82 103.73 140.48 181.60 222.19

Observations 15,000 15,000 15,000 15,000 15,000 15,000

0–3% 3–7% 7–10% 10–15% 15–30%
Tranche (in bps) (in bps) (in bps) (in bps) (in bps)

Panel B: CDO tranche spreads for CDX NA IG 6 tranches

Mean 29.95 91.83 20.43 9.33 5.13
Std. 2.92 15.37 4.27 1.58 0.74
Median 30.29 92.48 20.31 9.06 5.17
Min. 21.97 65.52 13.96 6.40 3.54
Max. 35.75 125.02 28.97 13.02 6.84

Observations 120 120 120 120 120

means that the investor receives 30% of the tranche notional at time 0 plus a fixed
running premium of 500 basis points per year, paid quarterly.10

In addition to the CDO tranche spreads, we also use 0.5-, 1-, 2-, 3-, 4-, and
5-year CDS spreads for each of the 125 index constituents.11 The total number of
observations in the estimation of the multiname default model is therefore 90,600:
125× 6 CDS spreads and five CDO tranche spreads observed on 120 days. Table 1
shows summary statistics of the CDS and CDO data.

10Upfront payments may be converted to running spreads using so-called “risky duration,” (see, e.g.,
Amato and Gyntelberg 2005). This calculation requires a fully parametric model and hence is not possible
within our modeling framework. Instead, we use the original upfront payment quotes available from
MarkIt for the equity tranche.

11The 5-year CDS contracts for the period March 21, 2006 to June 19, 2006 mature on June 20, 2011, consis-
tent with the maturity of the 5-year CDO tranches, but for the period June 20 to September 19, 2006, the
maturity of the 5-year CDS contracts is September 20, 2011 (and the maturity of the other CDS contracts
are similarly shifted forward by 3 months from June 20 and onward). However, this maturity mismatch
between the CDS and CDO contracts in the latter part of our sample period is automatically corrected
for when we imply out the term structures of firm-specific survival probabilities from observed CDS
spreads (see Appendix B) and hence poses no problem to the estimation of the model.
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As a proxy for riskless rates, we use LIBOR and swap rates since Feldhütter
and Lando (2008) show that swap rates are a more accurate proxy for riskless rates
than Treasury yields. Thus, prices of riskless zero-coupon bonds with maturities
up to 1 year are calculated from 1 to 12 months LIBOR rates (taking into account
money market quoting conventions), and for longer maturities are bootstrapped
from 1-, 2-, 3-, 4-, and 5-year swap rates (using cubic spline to infer swap rates for
semiannual maturities). This gives a total of 20 zero-coupon bond prices on any
given day (maturities of 1–12 months, 1.5, 2, 2.5, . . ., 5 years) from which zero-
coupon bond prices at any maturity up to 5 years can be found by interpolation
(again using cubic spline).

4 RESULTS

4.1 Marginal DPs

As the first step in the estimation of the multiname default model, we calibrate for
each firm daily term structures of risk-neutral DPs using all the available informa-
tion from CDS contracts with maturities up to 5 years. With 125 firms and a sample
period of 120 days, we calibrate a total of 125 × 120 = 15, 000 term structures of
DPs, with each term structure based on 6 CDS contracts.

Figure 1 plots for each day in the sample the average term structure of DPs
across the 125 firms. By definition, the term structures are upward sloping since
the probability of defaulting increases as maturity increases. Also, the graph shows
that on average the first derivative with respect to maturity is increasing.12 Thus,

forward DPs ∂Qt(τ6s)
∂s , which measure the probability of defaulting at time s given

that the firm has not yet defaulted, are upward sloping. Hence, the market expects
the marginal probability of default to increase over time for the average firm. This
is likely caused by the fact that the CDX NA IG index consists of solid investment
grade firms with low short-term DPs, and it is therefore more probable that credit
conditions worsen for a given firm than improve.

The sensitivity of each firm’s DP to the economy-wide factor Y is captured
in the parameter ai, which is estimated model independently through the co-
variance between firm-specific instantaneous DPs and market-wide instantaneous
DPs. Figure 2 shows the distribution of ais across firms (remember that the ais are
normalized such that the average across firms is 1). There is a significant amount
of variation in the ai’s, and for a large fraction of the firms, the DPs are quite insen-
sitive to market-wide fluctuations in credit risk. This suggests that the assumption
in Duffie and Gârleanu (2001) to let all firms have the same sensitivity through
identical ais is not supported by the data.

12This observation is apparent from a visual inspection of the graph, and quantitative estimates are avail-
able upon request.
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Figure 1 Default probabilities. The figure shows the average calibrated term structure of risk-

neutral DPs for 0–5 years over the period March 30, 2006 to September 20, 2006, averaging across

all 125 constituents of the CDX NA IG 6 index. DPs are calibrated on a firm-by-firm basis following

the procedure outlined in Appendix B.

Figure 2 Common factor sensitivities. The figure shows the distribution of the estimated common

factor sensitivities ai for the 125 constituents of the CDX NA IG 6 index. The sensitivities are

estimated following the procedure outlined in Appendix C.
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To examine whether the subset of firms with large ais have common char-
acteristics, we split the index into its five subindices (fraction of total index in
parenthesis): Energy (11%), Financials (19%), Basic Industrials (23%), Telecommu-
nications, Media and Technology (18%), and Consumer Products and Retail (29%),
and we find that firms with large ais are fairly evenly distributed across these five
sectors.13

The correlation between ais and the average 5-year CDS spread for firm i (av-
eraging across the 120 days) is 0.78 across the 125 firms. This strong positive cor-
relation indicates that the ad hoc procedure in Mortensen (2006), Eckner (2007) and
Eckner (2009), where ai is exogenously set based on the firm-specific 5-year CDS
spread, is reasonable.14

4.2 CDO Parameter Estimates and Pricing Results

The multiname default model is estimated on the basis of a panel dataset of daily
CDS and CDO tranche spreads as described in Section 2, and we assume that the
measurement error matrix Σε in Equation (9) is diagonal and use diffuse priors.
We run the MCMC estimation routine using a burn-in period of 20,000 simulations
and a subsequent estimation period of another 10,000 simulations, where we use
every 10th simulation to calculate parameter estimates.

The parameter estimates are given in Table 2, and the first thing we note is
that the volatility of the common factor is σ = 0.0166, which is low compared
to estimates in the previous literature: Duffee (1999) fits CIR processes to firm
default intensities using corporate bond data and finds an average σ of 0.074
and Eckner (2009) uses a panel dataset of CDS and CDO spreads similar to the
dataset used here and estimates σ to be 0.103. An important factor in explain-
ing this difference in the estimated size of σ is the extent to which systematic
and idiosyncratic default risk is separated. Duffee (1999) is not concerned with
such a subdivision of the default risk and therefore estimates a factor that in-
cludes both systematic and unsystematic risk. Eckner (2009) has a model that is
similar to ours, but when estimating the model he imposes strong restrictions on
the parameters of the systematic and idiosyncratic factors. For example, he re-
quires σ2 of the common factor to be equal to the average σ2

i of the idiosyncratic
factors.

Our results suggest that separating default risk into an idiosyncratic and a
common component, and letting these factors be fully flexible during the esti-
mation, reveals that the common factor is “slow moving” in the sense that the

13The distribution on sectors of the firms with the 20% largest market sensitivities ai is: Energy (8%), Finan-
cials (8%), Basic Industrials (16%), Telecommunications, Media and Technology (28%), and Consumer
Products and Retail (40%).

14Mortensen (2006) fixes ai implicitly through a parameter restriction but notes that it effectively cor-
responds to setting ai equal to the fraction of firm-specific to average (across all firms) 5-year CDS
spread.
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Table 2 Parameter estimates (common factor). The table reports point estimates and
95% confidence intervals (in parenthesis) for the parameters of the multiname default
model outlined in Section 1

κ0 (×105) κ1 σ (×102)

2.32 0.94 1.66
(2.15, 2.58) (0.90, 0.99) (1.48, 1.81)

l (×103) μ (×102)

3.74 1.59
(2.54, 4.59) (1.11, 2.12)

κP
1 lP (×102) μP (×1010)

−3.45 2.54 8.34
(−15.09, 5.08) (3.40 ∙ 10−13, 2.18 ∙ 104) (8.19, 1.57 ∙ 108)

√
Σ11

√
Σ22

√
Σ33

0.11 0.19 0.16
(0.10, 0.33) (0.15, 0.43) (0.11, 0.51)
√

Σ44
√

Σ55

0.35 0.38
(0.30, 0.64) (0.28, 0.67)

volatility is low. In addition, we estimate the total contribution of jumps l × μ to
be 6 ∙ 10−5 which is lower than the estimate of 3 ∙ 10−3 in Eckner (2009), further
underlining that the total volatility of the common factor is low when properly
estimated.15 Finally, we note that although the common factor is not very volatile,
it is explosive with a mean reversion coefficient of 0.94 under the risk-neutral mea-
sure. Under the actual measure, the factor is estimated to be mean-reverting, al-
though the mean-reversion coefficient is hard to pin down with any precision due
to the relatively short time span of our data sample.

We now examine the pricing ability of our model by considering the average
pricing errors and root mean squared errors (RMSEs) given in Table 3. We see
that on average the model underestimates spreads for the 3–7% tranche by 7 basis
points and overestimates the 10–15% tranche by 4 basis points. For comparison,

15In a previous version of this paper, we imposed parameter restrictions similar to Eckner (2009), which
resulted in parameter estimates consistent with those that he reports.
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Table 3 CDO pricing errors. The table reports mean and standard deviation of the
daily pricing errors for each of the five CDO tranches: 0–3%, 3–7%, 7–10%, 10–15%,
and 15–30% of the CDX NA IG 6 index over the period March 30, 2006 to Septem-
ber 20, 2006. The pricing errors are calculated as model-implied minus observed
tranche spreads, and the model spreads are based on the parameter point estimates in
Table 2

0–3% 3–7% 7–10% 10–15% 15–30%
Tranche (in %) (in bps) (in bps) (in bps) (in bps)
Mean −0.7888 −6.93 0.55 3.96 −1.12
RMSE 1.7907 14.31 2.94 4.42 1.31

Mortensen (2006) reports average bid-ask spreads for the 3–7% tranche to be 10.9
basis points and for the 10–15% to be 5 basis points. In both cases, average pricing
errors are smaller than the bid-ask spread. The RMSEs of the model are larger than
the average pricing errors, so the model errors are not consistently within the bid-
ask spread, but RMSEs and pricing errors suggest a good overall fit.

Figure 3 shows the observed and fitted CDO tranche spreads over time, and
the graphs confirm a reasonable fit to all tranches apart from a slight underesti-
mation of the 3–7% tranche and overestimation of the 15–30% tranche. It is par-
ticularly noteworthy that the time series variation in the most senior tranches—
especially the 15–30% tranche—is well matched. This is surprising because both
the level and the time series variation of the 15–30% tranche have been dif-
ficult to capture by models in the previous literature. Mortensen (2006) finds
that jumps in the common factor are necessary to generate sufficiently high se-
nior tranche spreads, but even with jumps it has been difficult to reproduce the
observed time series variation in senior tranche spreads as argued by Eckner
(2009) and in a previous version of this paper.16 What enables our model to fit
the time series variation of senior tranche spreads well is that we have not im-
posed the usual set of strong assumptions on the parameters of the common and
idiosyncratic factors as done in Mortensen (2006), Eckner (2009) and in a pre-
vious version of this paper. Thus, a careful implementation of the multiname
default model frees up the model’s ability to fit tranche spreads in important
dimensions.

To examine the contribution of systematic default risk to the total default
risk across different maturities, we calculate the following: For each maturity,
date, and firm, we use the estimated sensitivities ai and the path and parame-
ters of the common factor Y to calculate the systematic part of the risk-neutral
DP according to Equations (1) and (2). We then find an average term-structure

16The previous version of the paper entitled ”An empirical investigation of an intensity-based model for
pricing CDO tranches” is available upon request.
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Figure 3 CDO tranche spreads. The graphs show the observed (solid black) and model-implied

(dashed gray) CDO tranche spreads for the five CDX NA IG 6 tranches: 0–3%, 3–7%, 7–10%,

10–15%, and 15–30% over the period March 30, 2006 to September 20, 2006. The model-implied

spreads are based on the parameter estimates reported in Table 2.

of systematic default risk by averaging across firms and dates and plot the result
in Figure 4 together with the average total default risk inferred from observed
CDS spreads. The figure shows that the systematic contribution to the overall de-
fault risk is small for short maturities but increases with maturity. As shown in
Table 4 the average exposure to systematic default risk on a 6-month horizon is
merely 0.003% and constitutes only 6% of the overall default risk but increases
to 0.874% and a fraction of 26% of the total default risk for a 5-year horizon.
Hence, out of the total average 5-year DP of 3.309%, 0.874% is systematic and
nondiversifiable.

5 IDIOSYNCRATIC DEFAULT RISK

So far in the estimation, we have put structure on the systematic part of default
risk through the specification of the common factor, while total default risk has
been estimated model independently. Combining the two elements gives us for
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Figure 4 Average DPs. The figure shows the average term structure of risk-neutral DPs, aver-

aging across all 125 constituents of the CDX NA IG 6 index and across all trading days in the

period March 30, 2006 to September 20, 2006. The DPs are decomposed into their common (dark

gray) and idiosyncratic (light gray) parts. The total DPs (dark and light gray) are calibrated from

CDS spreads (see Appendix B), and the common part is calculated using the parameter estimates

reported in Table 2.

Table 4 Average DPs. The table reports average risk-neutral DPs, averaging across all
125 constituents of the CDX NA IG 6 index and across all trading days in the period
March 30, 2006 to September, 2006. “Total DP” reports the total DP and corresponds
to the total gray area (dark and light) in Figure 4, and “Common part of total DP”
similarly expresses the common factor part of the total DP corresponding to the dark
gray area in Figure 4.

0.5 year 1 year 2 years 3 years 4 years 5 years
Maturity (%) (%) (%) (%) (%) (%)

Total DP 0.051 0.134 0.460 1.080 2.042 3.309
Common part of total DP 0.003 0.010 0.048 0.147 0.376 0.874
Common part in % of total DP 5.88 7.64 10.40 13.59 18.42 26.41

each firm and each date a term structure of idiosyncratic default risk calculated as
the “difference” between total default risk and its systematic component.17 Thus,

17More specifically, the relation

Qt(τi > s) = EQ
t

[(

−ai

∫ s

t
Yu du

)]

∙ EQ
t

[(

−
∫ s

t
Xi,udu

)]
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for each firm, we have a dataset consisting of the idiosyncratic part of the survival

probability EQ
t [exp(−

∫ t+s
t Xi,u du)] for maturities of s = 0.5, 1, 2, 3, 4, 5 years for

each of the 120 days in the sample. Given this panel dataset, we can now put struc-
ture on the idiosyncratic default risk and estimate the parameters of this structural
form.

We can allow idiosyncratic default risk to be the sum of several factors and
the factors can be of any distributional form subject only to the requirements of
nonnegativity and that we can calculate the expectation

EQ
t

[

exp

(

−
∫ s

t
Xi,u du

)]

.

We choose to let the idiosyncratic factors have the same functional form as the
common factor, namely be a one-factor affine jump-diffusion

dXi,t = (κi,0 + κi,1Xi,t)dt+ σi
√

Xi,t dWQ
i,t + dJQ

i,t

with an essentially affine risk premium for diffusive risk and constant risk pre-
mium for the jump risk. This allows us to compare the results of our general esti-
mation approach with those in previous literature, where a number of restrictions
are placed jointly on the common and idiosyncratic factors. Thus, for each of the
125 firms in the sample, we estimate by MCMC the parameters of the idiosyncratic
factor in the same way as the parameters of the common factor, but in this estima-
tion, we observe a panel dataset of the idiosyncratic part of DPs instead of CDO
prices. Note that structural assumptions on the idiosyncratic risk were not nec-
essary in order to price CDOs in the previous section, but adding structure here
enables us to gain further understanding of the nature of the idiosyncratic default
risk.

The results from the estimation of the idiosyncratic default factors are given
in Table 5. We see that the average volatility across all firms is σ = 0.14, almost 10
times higher than the volatility estimate of 0.017 for the common factor. Combined
with the parameter estimates discussed in the previous section, this shows that the
idiosyncratic factors are more volatile than the systematic factor. The fact that the
volatility of our systematic factor is lower than that reported in previous papers
reflects that our estimation procedure allows us to fully separate the dynamics
of the systematic factor from the dynamics of the idiosyncratic factors. This leads
to a low-volatility systematic factor and high-volatility idiosyncratic factors, while
previous research finds something in-between. In addition, we see that the average
total (risk-neutral) contribution from jumps is l × μ = 4 ∙ 10−2, which is higher
than the total jump contribution in the systematic factor of 6 ∙ 10−5, reinforcing the
conclusion that volatilities of the idiosyncratic factors are higher than that of the
systematic factor.

allows us to infer the idiosyncratic part of survival probabilities directly from the estimated common

factor and the CDS implied survival probabilities, EQ
t

[(
− ai

∫ s
t Yu du

)]
and Qt(τi > s), respectively.
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Table 5 Parameter estimates (idiosyncratic factors). The table reports mean, median,
and standard deviation (in parenthesis) of the 125 parameter point estimates resulting
from the idiosyncratic factor estimations in the multiname default model outlined in
Section 1.

κ0 (×106) κ1 σ

9.08 0.80 0.14
0.41 0.87 0.16

(36.61) (0.24) (0.08)

l (×103) μ

4.48 8.93
2.68 0.30

(6.05) (59.12)

κP
1 lP (×10−2) μP (×109)

0.14 1.31 1.66
−0.60 1.30 1.66
(5.79) (0.34) (0.07)

√
Σ11 (×104)

√
Σ22 (×104)

√
Σ33 (×104)

1.10 1.19 1.37
1.01 1.04 1.18

(0.26) (0.42) (0.52)

√
Σ44 (×104)

√
Σ55 (×104)

1.40 1.66
1.23 1.09

(0.69) (2.55)

We see that κ1 is positive on average, so the idiosyncratic factors are on average
explosive under the risk-neutral measure. However, they are less explosive than
the systematic factor, implying that when pricing securities sensitive to default
risk, the relative importance of systematic risk increases as maturity increases in
accordance with our observations in Figure 4.

6 CONCLUSION

We present a new approach to estimate the relative contributions of systematic and
idiosyncratic default risks in an intensity-based model. Based on a large dataset
of CDS and CDO tranche spreads on the NA IG CDX index, we find that our
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model is able to capture both the level and time series dynamics of CDO tranche
spreads. We then go on and split the total default risk of a given entity into
its idiosyncratic and systematic part. We find that the systematic default risk is
explosive but has low volatility and that the relative contribution of systematic
default risk is small for short maturities but of growing importance as maturity
increases. Our subsequent parametric estimation of the idiosyncratic default risks
shows that idiosyncratic risk is more volatile and less explosive than systematic
risk.

APPENDIX A: CDS PRICING

This section briefly explains how to price CDSs. More thorough introductions are
given in Duffie (1999) and O’Kane (2008).

A CDS contract is an insurance agreement between two counterparties writ-
ten on the default event of a specific underlying reference obligation. The pro-
tection buyer pays fixed premium payments periodically until a default occurs
or the contract expires whichever happens first. If default occurs, the protection
buyer delivers the reference obligation to the protection seller in exchange for face
value.

For a CDS contract covering default risk between time t0 = t and tM = T
and with premium payment dates t1, . . . , tM, the value of the protection payment
is given as

Prot(t, T) = EQ
t

[

(1− δ) exp

(

−
∫ τ

t
ru du

)

1(τ6T)

]

,

where τ is the default time and δ is the recovery rate. The value of the premium
payment stream is similarly S(t, T) ∙ Prem(t, T), where S(t, T) is the annual CDS
premium and

Prem(t, T) = EQ
t

[
M

∑
j=1

exp

(

−
∫ min{tj ,τ}

t
ru du

) ∫ tj

tj−1

1(τ>s)ds

]

.

The CDS premium at time t is settled such that it equates the two payment streams,

that is, S(t, T) = Prot(t,T)
Prem(t,T) .

In order to calculate the CDS premium S(t, T), we make the simplifying as-
sumptions that the recovery rate δ is constant at 40%, that the risk-free interest rate
is independent of the default time τ, and finally that default, if it occurs, will occur
halfway between two premium payment dates. With these assumptions, we can
rewrite the two expressions above as

Prot(t, T) = (1− δ)
M

∑
j=1

P
(

t,
tj−1+tj

2

)
∙
(
Qt(τ > tj−1)−Qt(τ > tj)

)
, (10)
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Prem(t, T) =
M

∑
j=1

P
(

t,
tj−1+tj

2

)
∙

tj − tj−1

2
∙
(
Qt(τ > tj−1)−Qt(τ > tj)

)

+
M

∑
j=1

P(t, tj) ∙
(
tj − tj−1

)
∙Qt(τ > tj). (11)

APPENDIX B: CALIBRATION OF SURVIVAL PROBABILITIES

For the calibration of firm-specific survival probabilities from observed CDS
spreads, we assume that risk-neutral probabilities take the flexible form

Qt(τ > s) =
1

1+ α2 + α4
(e−α1(s−t) + α2e−α3(s−t)2 + α4e−α5(s−t)3), s > t, (12)

with all αj > 0. The calibrated survival probabilities s 7→ Qt(τ > s) for a given firm
at time t are then calculated by minimizing relative pricing errors using Equations
(10)–(12)

∑
T




Prot(t, T)/Prem(t, T)− Sobs(t, T)

Sobs(t, T)





2

,

where Sobs(t, T) is the empirically observed CDS spread at time t on a contract
with maturity T. The calibration is based on observed CDS spreads for maturities
of T = 0.5, 1, 2, 3, 4, and 5 years and is carried out separately for each firm, at each
time t, and results in a very accurate fit to the observed CDS term structure.18

APPENDIX C: ESTIMATION OF COMMON FACTOR SENSITIVITIES

The common factor sensitivities ai appearing in the specification (2) of individ-
ual default intensities can be estimated by ordinary linear regression, and with-
out exploiting specific assumptions on the dynamic evolution of the processes
Y, X1, . . . , XN except for a mild stationarity condition. As we argue in the follow-
ing, this model-independent technique only relies on the availability of term struc-
tures of risk-neutral survival probabilities for each of the N issuers in the portfolio.

The simple idea that we build upon is the fact that Equations (1) and (2) imply

− lim
s↘0

∂

∂s
Qt(τi > t+ s) = λi,t = aiYt + Xi,t,

18This calibration approach is close to the industry benchmark of fitting the observed CDS term structure
perfectly using piecewise constant intensities (see O’Kane 2008).
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and that we can calculate this quantity simply by inserting the calibrated survival
probabilities on the left-hand side of this expression.

If we now for fixed i, consider the regression

Wi,t = β0,i + β1,i(Vt − V̄) + εt, t = 1, . . . , T,

where

Wi,t = aiYt + Xi,t,

W̄i =
1
T

T

∑
t=1

Wi,t,

Vt =
1
N

N

∑
j=1

Wj,t,

V̄ =
1
T

T

∑
t=1

Vt,

and εt is a Gaussian noise term, then it follows by standard estimation theory that

β̂1,i =
∑t
(
Wi,t − W̄i)(Vt − V̄

)

∑t
(
Vt − V̄

)2 .

Under the assumption of stationarity of each of the processes X1, . . . , XN , Y (and
hence also of Wi and V), we can rewrite the estimated regression coefficient as

β̂1,i =
̂Cov(Wi, V)

V̂ar(V)
. (13)

Since X1, . . . , XN , Y are mutually independent then for sufficiently large N

Cov(Wi, V) =
1
N

Var(Xi) + aiVar(Y) ≈ aiVar(Y), (14)

and similarly,

Var(V) =
1

N2

N

∑
j=1

Var(Xj) +Var(Y) ≈ Var(Y), (15)

where we have applied the normalization 1
N ∑i ai = 1. By combining Equations

(13), (14), and (15), it is now straightforward to see that β̂1,i is an approximate
estimator of the unknown sensitivity ai.
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To increase numerical robustness in the calculations, we make a small approx-
imation and replace everywhere the instantaneous derivative

− lim
s↘0

∂

∂s
Qt(τi > t+ s)

with the 1-year DP

1−Qt(τi > t+ 1) = −
Qt(τi > t+ 1)−Qt(τi > t)

1− 0
≈ − lim

s↘0

∂

∂s
Qt(τi > t+ s)

since our calibration of the term structure of survival probabilities uses CDS con-
tracts with maturities from 0.5 to 5 years, which results in minor numerical insta-
bilities (across calendar time) in the very short end of the term structure.

APPENDIX D: ESTIMATION OF COMMON FACTOR

Once we have inferred marginal risk-neutral survival probabilities s 7→ qi,t(s) from
CDS spreads and estimated the common factors sensitivities ai, we are ready to
estimate the parameters and the path of the common factor process Y. Throughout
the estimation of the common factor process, all the qi,t(s) and all ai are taken as
given (and thus held fixed).

Given an initial path of Y and initial values of the common factor parameters,
the estimation procedure runs as follows:

(i) Calculate the common factor component of survival probabilities

EQ
t

[(

−ai

∫ s

t
Yu du

)]

for all firms i, all dates t and all maturities s.

(ii) Use the common factor components EQ
t [(−ai

∫ s
t Yu du)] from (i) and the cal-

ibrated term structures of survival probabilities qi,t(s) to determine the id-
iosyncratic component of survival probabilities

EQ
t

[(

−
∫ s

t
Xi,u du

)]

for all firms i, all dates t and all maturities s using the relation

qi,t(s) = EQ
t

[(

−ai

∫ s

t
Yu du

)]

∙ EQ
t

[(

−
∫ s

t
Xi,u du

)]

(iii) Use the idiosyncratic components EQ
t [(−

∫ s
t Xi,u du)] from (ii) as input to

Equation (5) and calculate spreads for the five CDO tranches for all dates
t (this is what is referred to as the “pricing formula” f in Section 2.2).
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(iv) Use the MCMC estimation routine to update the parameters and the path of
the common factor Y and repeat Steps (i)–(iv) until convergence.

APPENDIX E: CONDITIONAL POSTERIORS IN MCMC ESTIMATION

In this Appendix, the conditional posteriors stated in the main text and used in
MCMC estimation are derived. Bayes’ rule

p(X|Y) ∝ p(Y|X)p(X)

is repeatedly used in the calculations.

E.1. Conditionals of S, Y, J, and Z

The conditional posteriors of S, Y, J, and Z are used in most of the conditional
posteriors for the parameters and are therefore derived in this section.

E.1.1. p(Y|Θ, Σε, J, Z) and p(S|Θ, Σε, Y, J, Z). With the discretization in
Equation (8), we have that

p(Y|Θ, Σε, J, Z) =

(
T

∏
t=1

p(Yt|Yt−1, Θ, Σε, J, Z)

)

p(Y0)

= p(Y0)
T

∏
t=1

1

σ
√

ΔtYt−1
exp

(

−
1
2

[Yt − (κ0Δt + (κP
1 Δt + 1)Yt−1 + JtZt)]2

σ2ΔtYt−1

)

∝ p(Y0)σ
−TY

− 1
2

x exp

(

−
1
2

T

∑
t=1

[Yt − (κ0Δt + (κP
1 Δt + 1)Yt−1 + JtZt)]2

σ2ΔtYt−1

)

, (16)

where Yx = ∏T
t=1 Yt−1. Note that the posterior p(Y|Θ, Σε, J, Z) differs from

p(Y|Θ, Σε, J, Z, S).

The conditional posterior of S is found as

p(S|Θ, Σε, Y, J, Z) =
T

∏
t=1

|Σε|−
1
2 exp

(

−
1
2
[St − f (ΘQ, Yt)]

′Σ−1
ε [St − f (ΘQ, Yt)]

)

= |Σε|−
T
2 exp

(

−
1
2

T

∑
t=1

ê′tΣ
−1
ε êt

)

, (17)
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where êt = St − f (ΘQ, Yt). If Σε is diagonal this simplifies to

p(S|Θ, Σε, Y, J, Z) ∝
N

∏
i=1

Σ
− T

2
ε,ii exp

(

−
1

2Σε,ii

T

∑
t=1

ê2
t,i

)

.

This posterior does not depend on J, Z, κP
0 , and κP

1 .

E.1.2. p(Z|Θ, Σε, Y, J, S) and p(J|Θ, Σε, Y, Z, S). Since Zt is exponentially
distributed, we have that

p(Z|Θ, Σε, Y, J, S) ∝ p(S|Θ, Σε, Y, J, Z)p(Z|Θ, Σε, Y, J) (18)

∝ p(Y|Θ, Σε, J, Z)p(Z|Θ, Σε, J)

∝ p(Y|Θ, Σε, J, Z)
T

∏
t=1

1
μP exp

(

−
Zt

μP

)

∝ p(Y|Θ, Σε, J, Z)(μP)−T exp

(

−
Z•
μP

)

, (19)

where Z• = ∑T
t=1 Zt.

The jump time Jt can only take on two values so the conditional posterior for
Jt is Bernoulli. The Bernoulli probabilities are given as

p(J|Θ, Σε, Y, Z, S) ∝ p(S|Θ, Σε, Y, J, Z)p(J|Θ, Σε, Y, Z) (20)

∝ p(Y|Θ, Σε, J, Z)p(J|Θ, Σε, Z)

∝ p(Y|Θ, Σε, J, Z)p(J|Θ)

∝ p(Y|Θ, Σε, J, Z)
T

∏
t=1

(
(lPΔt)

Jt (1− lPΔt)
1−Jt

)

∝ p(Y|Θ, Σε, J, Z)(lPΔt)
J• (1− lPΔt)

T−J• (21)

with J• = ∑T
t=1 Jt

E.2. Conditional Posteriors

The conditional posteriors are derived and the choice of priors for the posteriors
are discussed in this section.
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(i) The conditional posterior of the error matrix Σε is given as

p(Σε|Θ, Y, J, Z, S) ∝ p(S|Θ, Σε, Y, J, Z)p(Σε|Θ, Y, J, Z)

∝ p(S|Θ, Σε, Y, J, Z)p(Σε|Θ)

∝ |Σε|−
T
2 exp

(

−
1
2

T

∑
t=1

ê′tΣ
−1
ε êt

)

p(Σε|Θ)

= |Σε|−
T
2 exp

(

−
1
2

tr(Σ−1
ε

T

∑
t=1

êt ê
′
t)

)

p(Σε|Θ).

The last line follows because − 1
2 ∑T

t=1 ê′tΣ
−1
ε êt = − 1

2 ∑T
t=1 tr(ê′tΣ

−1
ε êt) =

− 1
2 ∑T

t=1 tr(Σ−1
ε êt ê′t) = −

1
2 tr(∑T

t=1 Σ−1
ε êt ê′t) = −

1
2 tr(Σ−1

ε ∑T
t=1 êt ê′t). If the

prior on Σε is independent of the other parameters and has an inverse
Wishart distribution with parameters V and m then p(Σε|...) is inverse
Wishart distributed with parameters V + ∑T

t=1 êt ê′t and T + m. The special
case of V equal to the zero matrix and m = 0 corresponds to a flat prior.

(ii) The conditional posterior of κP
1 is found as

p(κP
1 |Θ\κP

1
, Σε, Y, J, Z, S) ∝ p(S|Θ, Σε, Y, J, Z)p(κP

1 |Θ\κP
1

, Σε, Y, J, Z)

∝ p(κP
1 |Θ\κP

1
, Σε, Y, J, Z)

∝ p(Y|Θ, Σε, J, Z)p(κP
1 |Θ\κP

1
, Σε).

According to Equation (16), we have

p(κP
1 |...) ∝ exp

(

−
1
2

T

∑
t=1

[Yt − (κ0Δt + (κP
1 Δt + 1)Yt−1 + JtZt)]2

σ2ΔtYt−1

)

p(κP
1 |Θ\κP

1
, Σε)

so

p(κP
1 |...) ∝ exp

(

−
1
2

T

∑
t=1

[atκ
P
1 − bt]2

σ2ΔtYt−1

)

p(κP
1 |Θ\κP

1
, Σε),

where

at =−ΔtYt−1,

bt = κ0Δt + Yt−1 + JtZt − Yt.
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Using the result in Frühwirth-Schnatter and Geyer (1998) and assuming flat
priors we have that κP

1 ∼ N(Qm, Q), where

m=
T

∑
t=1

atbt

σ2ΔtYt−1
,

Q−1 =
T

∑
t=1

a2
t

σ2ΔtYt−1
.

(iii) For the jump size parameter μP, the conditional posterior is found as

p(μP|Θ\μP , Σε, Y, J, Z, S) ∝ p(S|Θ, Σε, Y, J, Z)p(μP|Θ\μP , Σε, Y, J, Z)

∝ p(Y|Θ, Σε, J, Z)p(μP|Θ\μP , Σε, J, Z)

∝ p(Z|Θ, Σε, J)p(μP|Θ\μP , Σε, J)

∝ p(Z|Θ)p(μP|Θ\μP , Σε)

∝ (μP)−T exp

(

−
Z•
μP

)

p(μP|Θ\μP , Σε).

If the prior on μP is flat, then the conditional posterior inverse gamma dis-
tributed with parameters Z• and T − 1.

(iv) The same calculations as for the jump size parameter μP yields the condi-
tional posterior of the jump time parameter lP as

p(lP|Θ\lP , Σε, Y, J, Z, S) ∝ p(J|Θ)p(lP|Θ\lP , Σε)

∝ ((lPΔt)
J• (1− lPΔt)

T−J• )p(lP|Θ\lP , Σε).

Assuming a flat prior on lP the conditional posterior of lPΔt is beta
distributed, lPΔt ∼ B(J• + 1, T − J• + 1).

(v) The parameters σ and κ0 are sampled by Metropolis–Hastings since the con-
ditional distributions are not known. Denoting any of the two parameters θi,
the conditional distribution is found as

p(θi|Θ\θi
, Σε, Y, J, Z, S) ∝ p(S|Θ, Σε, Y, J, Z)p(θi|Θ\θi

, Σε, Y, J, Z)

∝ p(S|Θ, Σε, Y, J, Z)p(Y|Θ, Σε, J, Z)p(θi|Θ\θi
, Σε, J, Z)

∝ p(S|Θ, Σε, Y, J, Z)p(Y|Θ, Σε, J, Z)p(θi|Θ\θi
, Σε).

Flat priors on both parameters are assumed.
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(vi) The parameters κQ
1 , lQ, and μQ are sampled by Metropolis–Hastings. The

only difference in the derivation of their conditional distributions compared
to derivation of the distributions of σ and κ0 is that the distribution of Y does
not depend on these three parameters. Letting θi represent any of the three
parameters, the conditional distribution is found as

p(θi|Θ\θi
, Σε, Y, J, Z, S) ∝ p(S|Θ, Σε, Y, J, Z)p(θi|Θ\θi

, Σε, Y, J, Z)

∝ p(S|Θ, Σε, Y, J, Z)p(Y|Θ, Σε, J, Z)p(θi|Θ\θi
, Σε, J, Z)

∝ p(S|Θ, Σε, Y, J, Z)p(θi|Θ\θi
, Σε).

Flat priors on all three parameters are assumed.

(vii) The latent jump indicators Jt’s are sampled individually from Bernoulli dis-
tributions. To see this, note that Equation (21) implies that

p(J|Θ, Σε, Y, Z, S)

∝ ∏T
t=1 exp

(

−
1
2

[Yt − (κ0Δt + (κP
1 Δt + 1)Yt−1 + JtZt)]2

σ2ΔtYt−1

)(
lPΔt

1− lPΔt

)Jt

.

In the actual implementation, we use

p(J|Θ, Σε, Y, Z, S)

∝ ∏T
t=1 exp

(

−
1
2
(−2[Yt−(κ0Δt+(κ

P
1 Δt+1)Yt−1)]+JtZt)JtZt

σ2ΔtYt−1

)(
lPΔt

1− lPΔt

)Jt

since this is numerically more robust.

(viii) For the latent jump sizes Zt, we have according to Equation (19) that

p(Z|Θ, Σε, Y, J, S) ∝
T

∏
t=1

exp

(

−
1
2

[Yt − (κ0Δt + (κP
1 Δt + 1)Yt−1 + JtZt)]2

σ2ΔtYt−1
−

Zt

μP

)

so the Zts are conditionally independent and are sampled individually. If
Jt = 0, then Zt is sampled from an exponential distribution with mean μP. If
Jt = 1, tedious calculations show that

p(Zt|Θ, Σε, Y, J, Z\Zt
, S) ∝

[((κP
1 + μPσ2)Δt + 1)Yt−1 − (Yt − κ0Δt) + Zt]2)

σ2ΔtYt−1
,

where Zt > 0. Therefore, Zt is drawn from a N((Yt − κ0Δt) − ((κP
1 +

μPσ2)Δt + 1)Yt−1, σ2ΔtYt−1) distribution and the draw is rejected if Zt < 0.
In practice the number of rejections are small.19

19If the draws were frequently rejected the method in Gelfand, Smith, and Lee (1992) could be used.
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(ix) The latent Yts are sampled individually by Metropolis–Hastings and for t =
1, ..., T − 1 the conditional posterior is

p(Yt|Θ, Σε, Y\Yt
, J, Z, S) ∝ p(S|Θ, Σε, Y, J, Z, S)p(Yt|Θ, Σε, Y\Yt

, J, Z)

∝ p(St|Θ, Σε, Yt, J, Z, S)p(Yt|Θ, Σε, Yt−1, Yt+1, J, Z)

∝ p(St|Θ, Σε, Yt, J, Z, S)

×p(Yt|Θ, Σε, Yt−1, J, Z)p(Yt+1|Θ, Σε, Yt, J, Z)

For YT , the conditional posterior is

p(YT |Θ, Σε, Y\YT
, J, Z, S) ∝ p(YT |Θ, Σε, YT−1, J, Z, S)

∝ p(ST |Θ, Σε, YT , J, Z, S)p(YT |Θ, Σε, YT−1, J, Z),

while for Y0, it is

p(Y0|Θ, Σε, Y\Y0
, J, Z, S) ∝ p(Y0|Θ, Σε, Y1, J, Z)

∝ p(Y1|Θ, Σε, Y0, J, Z)p(Y0).

E.3. Implementation Details

In the RW-MH steps of the MCMC sample, the proposal density is chosen to be
Gaussian, and the efficiency of the RW-MH algorithm depends crucially on the
variance of the proposal normal distribution. If the variance is too low, the Markov
chain will accept nearly every draw and converge very slowly while it will reject a
too high portion of the draws if the variance is too high. We therefore do an algo-
rithm calibration and adjust the variance in the first half of the burn-in period in
the MCMC algorithm. Roberts, Gelman, and Gilks (1997) recommend acceptance
rates close to 1

4 and therefore the standard deviation during the algorithm calibra-
tion is chosen as follows: Every 100th draw the acceptance ratio of each parameter
is evaluated. If it is less than 10%, the standard deviation is doubled, while if it is
more than 50% it is cut in half. This step is prior to the second half of the burn-
in period since the convergence results of RW-MH only applies if the variance is
constant (otherwise the Markov property of the chain is lost).

The Fourier inversion in Equation (7) is calculated by using Fast Fourier
Transform (FFT) and the number of points used in FFT is 218. We use Simpson’s
rule in the FFT routine as suggested by Carr and Madan (1999), and our results
suggest a significant improvement in overall accuracy. The characteristic function
is not evaluated in every Fourier transform point. Instead, since the characteristic
function is exponentially affine with coefficient functions A and B, the functions A
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and B are splined from a lower number of points. The spline uses a total number
of 60 points. Also, the integration in Equation (6) is done using Gauss–Legendre
integration and the number of integration points is 60.

Received May 7, 2008; revised September 8, 2011; accepted September 27, 2011.
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